43 research outputs found

    Emerging roles of astrocytes in blood-brain barrier disruption upon amyloid-beta insults in Alzheimerā€™s disease

    No full text
    Blood-brain barrier disruption occurs in the early stages of Alzheimerā€™s disease. Recent studies indicate a link between blood-brain barrier dysfunction and cognitive decline and might accelerate Alzheimerā€™s disease progression. Astrocytes are the most abundant glial cells in the central nervous system with important roles in the structural and functional maintenance of the blood-brain barrier. For example, astrocytic coverage around endothelial cells with perivascular endfeet and secretion of homeostatic soluble factors are two major underlying mechanisms of astrocytic physiological functions. Astrocyte activation is often observed in Alzheimerā€™s disease patients, with astrocytes expressing a high level of glial fibrillary acid protein detected around amyloid-beta plaque with the elevated phagocytic ability for amyloid-beta. Structural alterations in Alzheimerā€™s disease astrocytes including swollen endfeet, somata shrinkage and possess loss contribute to disruption in vascular integrity at capillary and arterioles levels. In addition, Alzheimerā€™s disease astrocytes are skewed into proinflammatory and oxidative profiles with increased secretions of vasoactive mediators inducing endothelial junction disruption and immune cell infiltration. In this review, we summarize the findings of existing literature on the relevance of astrocyte alteration in response to amyloid pathology in the context of blood-brain barrier dysfunction. First, we briefly describe the physiological roles of astrocytes in blood-brain barrier maintenance. Then, we review the clinical evidence of astrocyte pathology in Alzheimerā€™s disease patients and the preclinical evidence in animal and cellular models. We further discuss the structural changes of blood-brain barrier that correlates with Alzheimerā€™s disease astrocyte. Finally, we evaluate the roles of soluble factors secreted by Alzheimerā€™s disease astrocytes, providing potential molecular mechanisms underlying blood-brain barrier modulation. We conclude with a perspective on investigating the therapeutic potential of targeting astrocytes for blood-brain barrier protection in Alzheimerā€™s disease

    Murine Beta-Amyloid (1–42) Oligomers Disrupt Endothelial Barrier Integrity and VEGFR Signaling via Activating Astrocytes to Release Deleterious Soluble Factors

    No full text
    Transgenic mouse models of Alzheimer’s disease (AD) overexpress mutations of the human amyloid protein precursor (APP) and presenilin-1 (PSEN1) genes, which are known causes of amyloid pathology in familial AD. However, animal models for studying AD in the context of aging and age-related co-morbidities, such as blood–brain barrier (BBB) disruptions, are lacking. More recently, aged and progeroid mouse models have been proposed as alternatives to study aging-related AD, but the toxicity of murine amyloid-beta protein (Aβ) is not well defined. In this study, we aimed to study the potential toxicity of murine Aβ on brain endothelial cells and astrocytes, which are important components of the BBB, using mouse brain endothelial cells (bEnd.3) and astrocytes (C8-D1A). Murine-soluble Aβ (1–42) oligomers (sAβO42) (10 µM) induced negligible injuries in an endothelial monolayer but induced significant barrier disruptions in a bEnd.3 and C8-D1A co-culture. Similar results of endothelial perturbation were observed in a bEnd.3 monolayer treated with astrocyte-conditioned medium (ACM) generated by astrocytes exposed to sAβO42 (ACM-sAβO42), while additional exogenous sAβO42 did not cause further damage. Western blot analysis showed that ACM-sAβO42 altered the basal activities of vascular endothelial growth factor receptor 2 (VEGFR2), eNOS, and the signaling of the MEK/ERK and Akt pathways in bEnd.3. Our results showed that murine sAβO42 was moderately toxic to an endothelial and astrocyte co-culture. These damaging effects on the endothelial barrier were induced by deleterious soluble factors released from astrocytes, which disrupted endothelial VEGFR2 signaling and perturbed cell survival and barrier stabilization

    Piceatannol Protects Brain Endothelial Cell Line (bEnd.3) against Lipopolysaccharide-Induced Inflammation and Oxidative Stress

    No full text
    Dysfunction of the bloodā€“brain barrier (BBB) is involved in the pathogenesis of many cerebral diseases. Oxidative stress and inflammation are contributing factors for BBB injury. Piceatannol, a natural ingredient found in various plants, such as grapes, white tea, and passion fruit, plays an important role in antioxidant and anti-inflammatory responses. In this study, we examined the protective effects of piceatannol on lipopolysaccharide (LPS) insult in mouse brain endothelial cell line (bEnd.3) cells and the underlying mechanisms. The results showed that piceatannol mitigated the upregulated expression of adhesion molecules (ICAM-1 and VCAM-1) and iNOS in LPS-treated bEnd.3 cells. Moreover, piceatannol prevented the generation of reactive oxygen species in bEnd.3 cells stimulated with LPS. Mechanism investigations suggested that piceatannol inhibited NF-ĪŗB and MAPK activation. Taken together, these observations suggest that piceatannol reduces inflammation and oxidative stress through inactivating the NF-ĪŗB and MAPK signaling pathways on cerebral endothelial cells in vitro

    Lysosomal Ca2+ Signaling Regulates High Glucose-Mediated Interleukin-1Ī² Secretion via Transcription Factor EB in Human Monocytic Cells

    No full text
    Aberrant activation of the innate immune system, including NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome-dependent interleukin-1Ī² (IL-1Ī²) secretion, has been implicated in the pathogenesis of type 2 diabetes mellitus (T2DM) and its complication. Our previous study demonstrated that hyperglycemia, a hallmark characteristic of T2DM, induced NLRP3 inflammasome-dependent caspase-1 activation and IL-1Ī² maturation in human monocytic cells. In this study, we examined the underlying mechanisms of secreting IL-1Ī² during hyperglycemia, with a focus on the alteration of Ca2+ homeostasis and lysosomal exocytosis. We found that high glucose (HG; 30ā€‰mM glucose for 48ā€‰h) altered Ca2+ homeostasis by reducing lysosomal Ca2+ concentration that appeared to be resulted from Ca2+ moving out of lysosomes into cytosol in human monocytic cell lines, U937 and THP-1 cells. Moreover, HG-induced lysosomal Ca2+-dependent mature IL-1Ī² release was strongly correlated with the activation and upregulation of two lysosomal marker proteins, cathepsin D and lysosomal-associated membrane protein-1 (LAMP-1). This involved calcineurin/transcription factor EB (TFEB) pathway and its target genes, cathepsin B, cathepsin D, and LAMP-1, to mediate lysosomal exocytosis. Therefore in this study, we revealed a novel mechanism of HG-induced lysosomal exocytosis which was regulated by lysosomal Ca2+ signals through calcineurin/TFEB pathway, thus contributing to IL-1Ī² secretion in human monocytic cells

    Natural Dietary Compound Xanthohumol Regulates the Gut Microbiota and Its Metabolic Profile in a Mouse Model of Alzheimerā€™s Disease

    No full text
    Discovering new and effective drugs for the treatment of Alzheimerā€™s disease (AD) is a major clinical challenge. This study focuses on chemical modulation of the gut microbiome in an established murine AD model. We used the 16S rDNA sequencing technique to investigate the effect of xanthohumol (Xn) on the diversity of intestinal microflora in 2-month- and 6-month-old APP/PS1 mice, respectively. APP/PS1 and wild-type mice were treated by gavage with corn oil with or without Xn every other day for 90 days. Prior to and following treatment, animals were tested for spatial learning, cognitive and memory function. We found Xn reduced cognitive dysfunction in APP/PS1 mice and significantly regulated the composition and abundance of gut microbiota both in prevention experiments (with younger mice) and therapeutic experiments (with older mice). Differential microflora Gammaproteobacteria were significantly enriched in APP/PS1 mice treated with Xn. Nodosilineaceae and Rikenellaceae may be the specific microflora modulated by Xn. The penicillin and cephalosporin biosynthesis pathway and the atrazine degradation pathway may be the principal modulation pathways. Taken together, oral treatment with Xn may have a neuroprotective role by regulating the composition of intestinal microflora, a result that contributes to the scientific basis for a novel prophylactic and therapeutic approach to AD

    Anti-Hyperglycemic Effects of Refined Fractions from <i>Cyclocarya paliurus</i> Leaves on Streptozotocin-Induced Diabetic Mice

    No full text
    To identify the chemical components responsible for the anti-hyperglycemic effect of Cyclocarya paliurus (Batal.) Iljinsk (Juglandaceae) leaves, an ethanol extract (CPE) and a water extract (CPW) of C. paliurus leaves, as well as their total flavonoids (CPF), triterpenoids (CPT) and crude polysaccharides (CPP), were prepared and assessed on streptozotocin (STZ)-induced diabetic mice. After being orally administrated once a day for 24 days, CPF (300 mg/kg), CPP (180 mg/kg), or CPF+CPP (300 mg/kg CPF + 180 mg/kg CPP) treatment reversed STZ-induced body weight and muscle mass losses. The glucose tolerance tests and insulin tolerance tests suggested that CPF, CPP, and CPF+CPP showed anti-hyperglycemic effect in STZ-induced diabetic mice. Furthermore, CPF enhances glucose-stimulated insulin secretion in MIN6 cells and insulin-stimulated glucose uptake in C2C12 myotubes. CPF and CPP suppressed inflammatory cytokine levels in STZ-induced diabetic mice. Additionally, CPF and CPP improved STZ-induced diabetic nephropathy assessed by H&E staining, blood urea nitrogen content, and urine creatinine level. The molecular networking and Emperor analysis results indicated that CPF showed potential anti-hyperglycemic effects, and HPLCā€“MS/MS analysis indicated that CPF contains 3 phenolic acids and 9 flavonoids. In contrast, CPT (650 mg/kg) and CPC (300 mg/kg CPF + 180 mg/kg CPP + 650 mg/kg CPT) did not show anti-hyperglycemic effect. Taken together, polysaccharides and flavonoids are responsible for the anti-hyperglycemic effect of C. paliurus leaves, and the clinical application of C. paliurus need to be refined

    Discovery of a Novel ERp57 Inhibitor as Antiplatelet Agent from Danshen (Salvia miltiorrhiza)

    No full text
    Danshen (Salvia miltiorrhiza) is a well-known herb in Traditional Chinese Medicine (TCM) for treating cardiovascular diseases, but the underlying mechanism remains to be fully elucidated. Here, we showed that Danshen and its active ingredient rosmarinic acid exhibited antiplatelet effects through the inhibition of ERp57, a member of protein disulfide isomerase (PDI) with potential roles in platelet aggregation. Danshen extract (DSE) exhibited potent inhibitory effects on the platelet aggregation induced by arachidonic acid- (AA-) induced platelet aggregation and the enzymatic activity of ERp57. Rosmarinic acid was identified by virtual screening and molecular docking as one of the hit compounds for ERp57. In line with this, rosmarinic acid displayed significant inhibitory effect on ERp57 activity and inhibited AA-induced platelet aggregation. Taken together, we demonstrated for the first time that DSE and rosmarinic acid displayed inhibitory effects on the catalytic activity of ERp57, providing evidence of the regulatory role of ERp57 underlying the antiplatelet effects of Danshen

    Relaxation effect of abacavir on rat basilar arteries

    No full text
    Background: The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels. Methods: The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5ā€² nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate. Results: Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5ā€™ nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries. Conclusion: Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may not be related to endothelial dysfunction as abacavir does not impair relaxation of blood vessels. The most likely explanation of increased cardiovascular risk may be increased platelet aggregation as suggested by other studies
    corecore