41 research outputs found

    Single-Electron Traps: A Quantitative Comparison of Theory and Experiment

    Full text link
    We have carried out a coordinated experimental and theoretical study of single-electron traps based on submicron aluminum islands and aluminum oxide tunnel junctions. The results of geometrical modeling using a modified version of MIT's FastCap were used as input data for the general-purpose single-electron circuit simulator MOSES. The analysis indicates reasonable quantitative agreement between theory and experiment for those trap characteristics which are not affected by random offset charges. The observed differences between theory and experiment (ranging from a few to fifty percent) can be readily explained by the uncertainty in the exact geometry of the experimental nanostructures.Comment: 17 pages, 21 figures, RevTex, eps

    Protecting digital media content

    No full text

    High Performance and Sub-Ambient Silicon Microchannel Cooling

    No full text
    ABSTRACT High performance single-phase Si microchannel coolers have been designed and characterized in single chip modules in a laboratory environment using either water at 22 0 C or a fluorinated fluid at temperatures between 20 and -40 0 C as the coolant. Compared to our previous work, key performance improvements were achieved through reduced channel pitch (from 75 to 60 microns), thinned channel bases (from 425 to 200 microns of Si), improved thermal interface materials, and a thinned thermal test chip (from 725 to 400 microns of Si). With multiple heat exchanger zones and 60 micron pitch microchannels with a water flow rate of 1.25 lpm, an average unit thermal resistance of 15.9 C-mm
    corecore