48 research outputs found

    Insecticide Resistance in Malaria Vectors: An Update at a Global Scale

    Get PDF
    Malaria remains the deadliest vector-borne disease in the world. With nearly half of the world’s population at risk, 216 million people suffered from malaria in 2016, with over 400,000 deaths, mainly in sub-Saharan Africa. Important global efforts have been made to eliminate malaria leading to significant reduction in malaria cases and mortality in Africa by 42% and 66%, respectively. Early diagnosis, improved drug therapies and better health infrastructure are key components, but this extraordinary success is mainly due the use of long-lasting insecticidal nets (LLINs) and indoor residual sprayings (IRS) of insecticide. Unfortunately, the emergence and spread of resistance in mosquito populations against insecticides is jeopardising the effectiveness of the most efficient malaria control interventions. To help establish suitable resistance management strategies, it is vital to better understand the distribution of resistance, its mechanisms and impact on effectiveness of control interventions and malaria transmission. In this chapter, we present the current status of insecticide resistance worldwide in main malaria vectors as well as its impact on malaria transmission, and discuss the molecular mechanisms and future perspectives

    Combined over-expression of two cytochrome P450 genes exacerbates the fitness cost of pyrethroid resistance in the major African malaria vector Anopheles funestus

    Get PDF
    Metabolic resistance driven by multiple P450 genes is worsening insecticide resistance in malaria vectors. However, it remains unclear whether such multiple over-expression imposes an additive fitness cost in the vectors. Here, we showed that two highly over-expressed P450 genes (CYP6P9a and CYP6P9b) combine to impose additive fitness costs in pyrethroid-resistant Anopheles funestus. Genotyping of the CYP6P9b resistance allele in hybrid mosquitoes from a pyrethroid-resistant FUMOZ-R and the susceptible FANG strains revealed that this gene imposes a fitness cost in resistant mosquitoes similar to CYP6P9a. Homozygote susceptible CYP6P9b_S (SS) significantly lay more eggs than the resistant (OR = 2.2, P = 0.04) and with greater hatching rate (p < 0.04). Homozygote resistant larvae CYP6P9b_R (RR) developed significantly slower than homozygote susceptible from L1-L4 (χ2 = 7.2; P = 0.007) with a late pupation observed for RR compared to both heterozygotes and homozygotes susceptible (χ 2 = 11.17; P = 0.0008). No difference was observed between genotypes for adult longevity with no change in allele frequency and gene expression across the lifespan. Furthermore, we established that CYP6P9b combines with CYP6P9a to additively exacerbate the fitness cost of pyrethroid resistance with a greater reduction in fecundity/fertility and increased developmental time of double homozygote resistant mosquitoes. Moreover, an increased proportion of double homozygote susceptible individuals was noted over 10 generations in the insecticide-free environment (χ2 = 6.3; P = 0.01) suggesting a reversal to susceptibility in the absence of selection. Such greater fitness cost imposed by multiple P450 genes shows that resistance management strategy based on rotation could help slow the spread of resistance

    CYP6P9-Driven Signatures of Selective Sweep of Metabolic Resistance to Pyrethroids in the Malaria Vector Anopheles funestus Reveal Contemporary Barriers to Gene Flow

    Get PDF
    Pyrethroid resistance in major malaria vectors such as Anopheles funestus threatens malaria control efforts in Africa. Cytochrome P450-mediated metabolic resistance is best understood for CYP6P9 genes in southern Africa in An. funestus. However, we do not know if this resistance mechanism is spreading across Africa and how it relates to broader patterns of gene flow across the continent. Nucleotide diversity of the CYP6P9a gene and the diversity pattern of five gene fragments spanning a region of 120 kb around the CYP6P9a gene were surveyed in mosquitoes from southern, eastern and central Africa. These analyses revealed that a Cyp6P9a resistance-associated allele has swept through southern and eastern Africa and is now fixed in these regions. A similar diversity profile was observed when analysing genomic regions located 34 kb upstream to 86 kb downstream of the CYP6P9a locus, concordant with a selective sweep throughout the rp1 locus. We identify reduced gene flow between southern/eastern Africa and central Africa, which we hypothesise is due to the Great Rift Valley. These potential barriers to gene flow are likely to prevent or slow the spread of CYP6P9-based resistance mechanism to other parts of Africa and would to be considered in future vector control interventions such as gene drive

    Functional validation of endogenous redox partner cytochrome P450 reductase reveals the key P450s CYP6P9a/-b as broad substrate metabolizers conferring cross-resistance to different insecticide classes in Anopheles funestus.

    Get PDF
    The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metab-olism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis we expressed AgCPR and AfCPR side by side with CYP6P9a and CYP6P9b, and functionally validate their role in detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differs from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and del-tamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only CYP6P9a-AfCPR membrane significantly metabolize DDT (producing dicofol), bendiocarb, clo-thianidin and chlorfenapyr (bioactivation into tralopyril). These demonstrate the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management

    Fitness cost of target-site and metabolic resistance to pyrethroids drives restoration of susceptibility in a highly resistant Anopheles gambiae population from Uganda

    Get PDF
    Background: Insecticide resistance threatens the effectiveness of malaria vector control, calling for an urgent need to design suitable resistance management strategies. Here, we established the resistance profiling of an Ugandan Anopheles gambiae population to insecticides using WHO procedures and assessed the potential restoration of susceptibility in the hybrid line Mayuge/KISUMU in an insecticide-free environment for eighteen (18) generations. Results: This An gambiae population exhibited a very high intensity of resistance to permethrin, deltamethrin, and alphacypermethrin with a consistent loss of efficacy of all long-lasting insecticidal nets (LLINs) tested including PBO-based and new generation nets Interceptor G2 (IG2) and Royal guard. Molecular analysis revealed a fixation of the L1014S-kdr mutation together with the overexpression of some P450 metabolic genes (CYP6Z1, CYP9K1, CYP6P1, 3 & 4) besides the cuticular resistance-related genes (CYP4G16) and sensorial appendage proteins (SAP1, SAP2, and SAP3) but no GSTe2 overexpression. In the absence of selection pressure, the mortality rate after exposure to insecticides increased significantly over generations, and restoration of susceptibility was observed for most of the insecticides in less than 10 generations. Accordingly, a significant reduction in the frequency of KdrE was observed after 13 generations coupled with reduced expression of most metabolic resistance genes. Conclusions: The results of this study show that the high intensity of pyrethroid resistance observed in An gambiae from Uganda associated with the loss of efficacy of LLINs could compromise vector control efforts. The study also highlights that an early rotation of insecticides could help manage resistance to insecticides by restoring the susceptibility. However, the persistence of Kdr mutation together with overexpression of some metabolic genes after many generations in the absence of selection pressure indicates the potential implication of modifiers alleviating the cost of resistance which needs to be further investigated

    Investigation of the influence of a glutathione S-transferase metabolic resistance to pyrethroids/DDT on mating competitiveness in males of the African malaria vector, Anopheles funestus [version 2; peer review: 1 approved, 2 approved with reservations]

    Get PDF
    Background: Metabolic resistance is a serious challenge to current insecticide-based interventions. The extent to which it affects natural populations of mosquitoes including their reproduction ability remains uncharacterised. Here, we investigated the potential impact of the glutathione S-transferase L119F-GSTe2 resistance on the mating competitiveness of male Anopheles funestus, in Cameroon. Methods: Swarms and indoor resting collections took place in March, 2018 in Tibati, Cameroon. WHO tube and cone assays were performed on F1 mosquitoes from indoor collected females to assess the susceptibility profile of malaria vectors. Mosquitoes mated and unmated males collected in the swarms were genotyped for the L119F metabolic marker to assess its association with mating male competitiveness. Results: Susceptibility and synergist assays, showed that this population was multiple resistant to pyrethroids, DDT and carbamates, likely driven by metabolic resistance mechanisms. Cone assays revealed a reduced efficacy of standard pyrethroid-nets (Olyset and PermaNet 2.0) with low mortality (80%). The L119F-GSTe2 mutation, conferring pyrethroid/DDT resistance, was detected in this An. funestus population at a frequency of 28.8%. In addition, a total of 15 mating swarms were identified and 21 An. funestus couples were isolated from those swarms.  A comparative genotyping of the L119F-GSTe2 mutation between mated and unmated males revealed that heterozygote males 119L/F-RS were less able to mate than homozygote susceptible (OR=7.2, P<0.0001). Surprisingly, heterozygote mosquitoes were also less able to mate than homozygote resistant (OR=4.2, P=0.010) suggesting the presence of a heterozygote disadvantage effect. Overall, mosquitoes bearing the L119-S susceptible allele were significantly more able to mate than those with 119F-R resistant allele (OR=2.1, P=0.03). Conclusion: This study provides preliminary evidences that metabolic resistance potentially exerts a fitness cost on mating competiveness in resistant mosquitoes

    Reduced performance of community bednets against pyrethroid-resistant Anopheles funestus and Anopheles gambiae, major malaria vectors in Cameroon

    Get PDF
    Background: Long-lasting insecticidal nets (LLINs) are a vital tool in the fight against malaria vectors. However, their efficacy in the field can be impacted by several factors, including patterns of usage, net age, mosquito resistance and the delayed mortality effect, all of which could influence malaria transmission. We have investigated the effectiveness of the various brands of LLINs available in markets and households in Cameroon on pyrethroid-resistant mosquitoes and assessed their post-exposure effect. Methods: Following quality control assessment on a susceptible laboratory mosquito strain, we evaluated the immediate and delayed mortality effects of exposure to LLINs (both newly bough LLINst and used ones collected from households in Elende village, Cameroon, in 2019) using standard WHO cone tests on Anopheles gambiae and Anopheles funestus populations collected from the Centre region of Cameroon. Alive female mosquitoes were genotyped for various resistance markers at different time points post-exposure to evaluate the impact of insecticide resistance on the efficacy of bednets. Results: The laboratory-susceptible strain experienced high mortality rates when exposed to all pyrethroid-only brands of purchased nets (Olyset® Net, Super Net, PermaNet® 2.0, Yorkool®, Royal Sentry®) (Mean±SEM: 68.66 ± 8.35% to 93.33 ± 2.90%). However, low mortality was observed among wild An. funestus mosquitoes exposed to the bednets (0 ± 0 to 28 ± 6.7%), indicating a reduced performance of these nets against field mosquitoes. Bednets collected from households also showed reduced efficacy on the laboratory strain (mortality: 19–66%), as well as displaying a significant loss of efficacy against the local wild strains (mortality: 0 ± 0% to 4 ± 2.6% for An. gambiae sensu lato and 0 ± 0% to 8 ± 3.2% for An. funestus). However, compared to the unexposed group, mosquitoes exposed to bednets showed a significantly reduced longevity, indicating that the efficacy of these nets was not completely lost. Mosquitoes with the CYP6P9a-RR and L119F-GSTe2 mutations conferring pyrethroid resistance showed greater longevity after exposure to the Olyset net than their susceptible counterparts, indicating the impact of resistance on bednet efficacy and delayed mortality. Conclusion: These findings show that although standard bednets drastically lose their efficacy against pyrethroid-resistant field mosquitoes, they still are able to induce delayed mortality in exposed populations. The results of this study also provide evidence of the actual impact of resistance on the quality and efficacy of LLINs in use in the community, with mosquitoes carrying the CYP6P9a-RR and L119F-GSTe2 mutations conferring pyrethroid resistance living longer than their susceptible counterparts. These results highlight the need to use new-generation nets that do not rely solely on pyrethroids

    Detection of a reduced susceptibility to chlorfenapyr in the malaria vector Anopheles gambiae contrasts with full susceptibility in Anopheles funestus across Africa

    Get PDF
    New insecticides have recently been produced to help control pyrethroid-resistant malaria vectors including the pyrrole, chlorfenapyr. Monitoring the susceptibility of mosquito populations against this new product and potential cross-resistance with current insecticides is vital for better resistance management. In this study, we assessed the resistance status of the major malaria vectors Anopheles gambiae and Anopheles funestus to chlorfenapyr across Africa and explored potential cross-resistance with known pyrethroid resistance markers. Efficacy of chlorfenapyr 100 µg/ml against An. gambiae and An. funestus from five Cameroonian locations, the Democratic Republic of Congo, Ghana, Uganda, and Malawi was assessed using CDC bottle assays. Synergist assays were performed with PBO (4%), DEM (8%) and DEF (0.25%) and several pyrethroid-resistant markers were genotyped in both species to assess potential cross-resistance between pyrethroids and chlorfenapyr. Resistance to chlorfenapyr was detected in An. gambiae populations from DRC (Kinshasa) (mortality rate: 64.3 ± 7.1%) Ghana (Obuasi) (65.9 ± 7.4%), Cameroon (Mangoum; 75.2 ± 7.7% and Nkolondom; 86.1 ± 7.4). In contrast, all An. funestus populations were fully susceptible. A negative association was observed between the L1014F-kdr mutation and chlorfenapyr resistance with a greater frequency of homozygote resistant mosquitoes among the dead mosquitoes after exposure compared to alive (OR 0.5; P = 0.02) whereas no association was found between GSTe2 (I114T in An. gambiae; L119F in An. funestus) and resistance to chlorfenapyr. A significant increase of mortality to chlorfenapyr 10 µg/ml was observed in An. funestus after to PBO, DEM and DEF whereas a trend for a decreased mortality was observed in An. gambiae after PBO pre-exposure. This study reveals a greater risk of chlorfenapyr resistance in An. gambiae populations than in An. funestus. However, the higher susceptibility in kdr-resistant mosquitoes points to higher efficacy of chlorfenapyr against the widespread kdr-based pyrethroid resistance

    Marked aggravation of pyrethroid resistance in major malaria vectors in Malawi between 2014 and 2021 is partly linked with increased expression of P450 alleles

    Get PDF
    Background: Increased intensity of pyrethroid resistance is threatening the effectiveness of insecticide-based interventions to control malaria in Africa. Assessing the extent of this aggravation and its impact on the efficacy of these tools is vital to ensure the continued control of major vectors. Here we took advantage of 2009 and 2014 data from Malawi to establish the extent of the resistance escalation in 2021 and assessed its impact on various bed nets performance. Methods: Indoor blood-fed and wild female Anopheles (An) mosquitoes were collected with an electric aspirator in Chikwawa. Cocktail and SINE PCR were used to identify sibling species belonging to An. funestus group and An. gambiae complex. The susceptibility profile to the four classes of insecticides was assessed using the WHO tubes bioassays. Data were saved in an Excel file. Analysis was done using Vassarstats and figures by Graph Pad. Results: In this study, a high level of resistance was observed with pyrethroids (permethrin, deltamethrin and alpha-cypermethrin with mortality rate at 5x discriminating concentration (DC) < 50% and Mortality rate at 10x DC < 70%). A high level of resistance was also observed to carbamate (bendiocarb) with mortality rate at 5x DC < 25%). Aggravation of resistance was also noticed between 2009 and 2021. For pyrethroids, the mortality rate for permethrin reduced from 47.2% in 2009 to 13% in 2014 and 6.7% in 2021. For deltamethrin, the mortality rate reduced from 42.3% in 2009 to 1.75% in 2014 and 5.2% in 2021. For Bendiocarb, the mortality rate reduced from 60% in 2009 to 30.1% in 2014 and 12.2% in 2021. The high resistance observed is consistent with a drastic loss of pyrethroid-only bed nets efficacy although Piperonyl butoxide (PBO)-based nets remain effective. The resistance pattern observed was linked with high up-regulation of the P450 genes CYP6P9a, CYP6P9b and CYP6M7 in An. funestus s.s. mosquitoes surviving exposure to deltamethrin at 1x, 5x and 10x DC. A significant association was observed between the 6.5 kb structural variant and resistance escalation with homozygote resistant (SV+/SV+) more likely to survive exposure to 5x and 10x (OR = 4.1; P < 0.001) deltamethrin than heterozygotes. However, a significant proportion of mosquitoes survived the synergist assays with PBO suggesting that other mechanisms than P450s are present. Conclusions: This resistance aggravation in An. funestus s.s. Malawian population highlights an urgent need to deploy novel control tools not relying on pyrethroids to improve the effectiveness of vector control

    High efficacy of chlorfenapyr-based net Interceptor ® G2 against pyrethroid-resistant malaria vectors from Cameroon

    Get PDF
    Background: The increasing reports of resistance to pyrethroid insecticides associated with reduced efficacy of pyrethroid-only interventions highlight the urgency of introducing new non-pyrethroid-only control tools. Here, we investigated the performance of piperonyl-butoxide (PBO)-pyrethroid [Permanet 3.0 (P3.0)] and dual active ingredients (AI) nets [Interceptor G2 (IG2): containing pyrethroids and chlorfenapyr and Royal Guard (RG): containing pyrethroids and pyriproxyfen] compared to pyrethroid-only net Royal Sentry (RS) against pyrethroid-resistant malaria vectors in Cameroon. Methods: The efficacy of these tools was firstly evaluated on Anopheles gambiae s.l. and Anopheles funestus s.l. from Gounougou, Mibellon, Mangoum, Nkolondom, and Elende using cone/tunnel assays. In addition, experimental hut trials (EHT) were performed to evaluate the performance of unwashed and 20 times washed nets in semi-field conditions. Furthermore, pyrethroid-resistant markers were genotyped in dead vs alive, blood-fed vs unfed mosquitoes after exposure to the nets to evaluate the impact of these markers on net performance. The XLSTAT software was used to calculate the various entomological outcomes and the Chi-square test was used to compare the efficacy of various nets. The odds ratio and Fisher exact test were then used to establish the statistical significance of any association between insecticide resistance markers and bed net efficacy. Results: Interceptor G2 was the most effective net against wild pyrethroid-resistant An. funestus followed by Permanet 3.0. In EHT, this net induced up to 87.8% mortality [95% confidence interval (CI): 83.5–92.1%) and 55.6% (95% CI: 48.5–62.7%) after 20 washes whilst unwashed pyrethroid-only net (Royal Sentry) killed just 18.2% (95% CI: 13.4–22.9%) of host-seeking An. funestus. The unwashed Permanet 3.0 killed up to 53.8% (95% CI: 44.3–63.4%) of field-resistant mosquitoes and 47.2% (95% CI: 37.7–56.7%) when washed 20 times, and the Royal Guard 13.2% (95% CI: 9.0–17.3%) for unwashed net and 8.5% (95% CI: 5.7–11.4%) for the 20 washed net. Interceptor G2, Permanet 3.0, and Royal Guard provided better personal protection (blood-feeding inhibition 66.2%, 77.8%, and 92.8%, respectively) compared to pyrethroid-only net Royal Sentry (8.4%). Interestingly, a negative association was found between kdrw and the chlorfenapyr-based net Interceptor G2 (χ2 = 138; P < 0.0001) with homozygote-resistant mosquitoes predominantly found in the dead ones. Conclusions: The high mortality recorded with Interceptor G2 against pyrethroid-resistant malaria vectors in this study provides first semi-field evidence of high efficacy against these major malaria vectors in Cameroon encouraging the implementation of this novel net for malaria control in the country. However, the performance of this net should be established in other locations and on other major malaria vectors before implementation at a large scale
    corecore