4 research outputs found

    Some aspects of plants adaptations to phosphorus deficiency in the soil environment

    No full text
    Wiele gleb, także uprawnych, charakteryzuje się bardzo niskim stężeniem rozpuszczonych w roztworze glebowym jonów fosforanowych, które są jedyną formą fosforu pobieraną przez rośliny. Jednocześnie, znaczną pulę fosforu glebowego stanowią organiczne formy tego pierwiastka, a dodatkowo duża frakcja fosforanów immobilizowana jest przez składniki gleby. Z tego powodu rośliny wykształciły wiele przystosowań ułatwiających im wydajne korzystanie z ograniczonych zasobów fosforu glebowego. Są to m.in. zmiany w budowie systemu korzeniowego mające na celu zwiększenie jego powierzchni chłonnej, tworzenie relacji symbiotycznych z grzybami mikoryzowymi, wzrost aktywności lub ilości białek odpowiedzialnych za pobieranie fosforanów z gleby, a także wydzielanie przez korzenie enzymów i kwasów organicznych, które uwalniają fosforany z obecnych w glebie związków organicznych i nieorganicznych. Celem niniejszej pracy jest omówienie wspomnianych przystosowań.Inorganic phosphates are the only form of phosphorus which plants can take up. Unfortunately, in most soils, including agricultural soils, concentration of phosphate ions in soil solutions is very low. On the other hand, considerable part of soil phosphorus pool is present in the form of phosphoroorganic compounds and a great fraction of phosphates is immobilized by soil particles. For these reasons, plants have developed many adaptations which facilitate more efficient use of the limited soil phosphates sources. These adaptations include changes in the root system architecture to enlarge the sorption area, formation of mycorrhizal associations, increase of activity or abundance of proteins responsible for phosphate ions uptake, as well as secretion of enzymes and organic acids which release phosphate ions from organic and inorganic phosphorous compounds. The goal of this paper is to outline the current state of knowledge about these adaptations

    Phosphate uptake and allocation – a closer look at Arabidopsis thaliana L. and Oryza sativa L.

    Get PDF
    This year marks the 20th anniversary of the discovery and characterization of the two Arabidopsis PHT1 genes encoding the phosphate transporter in Arabidopsis thaliana. So far, multiple inorganic phosphate (Pi) transporters have been described, and the molecular basis of Pi acquisition by plants has been well characterized. These genes are involved in Pi acquisition, allocation and/or signal transduction. This review summarizes how Pi is taken up by the roots and further distributed within two plants: Arabidopsis thaliana and Oryza sativa L. by plasma membrane phosphate transporters PHT1 and PHO1 as well as by intracellular transporters: PHO1, PHT2, PHT3, PHT4, PHT5 (VPT1), SPX-MFS and phosphate translocators family. We also describe the role of the PHT1 transporters in mycorrhizal roots of rice as an adaptive strategy to cope with limited phosphate availability in soil

    Regulation of V-ATPase by Jasmonic Acid: Possible Role of Persulfidation

    No full text
    Vacuolar H+-translocating ATPase (V-ATPase) is a proton pump crucial for plant growth and survival. For this reason, its activity is tightly regulated, and various factors, such as signaling molecules and phytohormones, may be involved in this process. The aim of this study was to explain the role of jasmonic acid (JA) in the signaling pathways responsible for the regulation of V-ATPase in cucumber roots and its relationship with other regulators of this pump, i.e., H2S and H2O2. We analyzed several aspects of the JA action on the enzyme, including transcriptional regulation, modulation of protein levels, and persulfidation of selected V-ATPase subunits as an oxidative posttranslational modification induced by H2S. Our results indicated that JA functions as a repressor of V-ATPase, and its action is related to a decrease in the protein amount of the A and B subunits, the induction of oxidative stress, and the downregulation of the E subunit persulfidation. We suggest that both H2S and H2O2 may be downstream components of JA-dependent negative proton pump regulation. The comparison of signaling pathways induced by two negative regulators of the pump, JA and cadmium, revealed that multiple pathways are involved in the V-ATPase downregulation in cucumber roots
    corecore