5 research outputs found

    Oils from Transgenic Flax Lines as Potential Chemopreventive Agents in Colorectal Cancer

    No full text
    Colorectal cancer is a major global health concern, and the need for effective chemopreventive agents is paramount. This study aimed to evaluate the potential of oils from transgenically modified flax for the prevention of colorectal cancer, in relation to the oil concertation. Flaxseed oils were obtained from traditional (Nike) and genetically modified flax lines (M and B). Cell viability assays were performed on various cancer cell lines, including colon adenocarcinoma cells. Flaxseed oil B exhibited the strongest anti-proliferative properties compared to the reference drugs and other oils. Additionally, M and B oils showed enhanced accumulation of Rhodamine 123 and increased apoptosis in colorectal cancer cells. M oil exhibited the highest levels of p53 protein. Notably, the tested transgenic oils did not induce metastasis and displayed stronger inhibition of COX-1 compared to COX-2. These data indicate the utility of flaxseed oils, especially from the M line, as adjuvants in colorectal cancer treatment, targeting the colon specifically

    Characteristics and Antioxidant Potential of Cold-Pressed Oils—Possible Strategies to Improve Oil Stability

    No full text
    The relations of the antiradical capacity to oxidative stability parameters and the contents of fatty acids, sterols, tocopherols, phenols, flavonoids, chlorophyll, Cu, and Fe were assessed in 33 cold-pressed seed oils: Walnut (7 brands of oils), rosehip (3), camelina (6), milk thistle (5), flax (6), and pumpkin (6). The antiradical capacity of oils depended strongly on tocopherol contents with a synergistic effect with polyphenols. The efficacy of tocopherols in cold-pressed oils was accompanied by a negative correlation of their antioxidant capacity with the peroxide value increase after 3 months of shelf life. This study also showed a positive correlation between the content of phytosterols and the antiradical capacity in the lipophilic fraction of cold-pressed oils rich in n-3 polyunsaturated fatty acids (PUFAs). Multiple regression analysis identified groups of antioxidants naturally occurring in cold-pressed oils in relation to their fatty acid composition, which added to the cold-pressed oils could provide possible strategies to improve their stability. Achieving high stability is primarily a result of high phytosterol content exceeding the molar ratio of 1:100 for total phytosterols to α-linolenic acid. However, the molar ratios of tocopherols to linoleic acid below 1:2000 and polyphenols to linoleic acid below 1:3000 does not prevent oxidation in oils with the predominance of linoleic acid

    Bioactive Compounds of Raspberry Oil Emulsions Induced Oxidative Stress via Stimulating the Accumulation of Reactive Oxygen Species and NO in Cancer Cells

    No full text
    There are growing interests in the complex combinations of natural compounds that may advance the therapy of cancer. Such combinations already exist in foods, and a good representative is seed oils. Two raspberry oils: cold pressed (ROCOP) and one extracted by supercritical CO2 (ROSCO2) were evaluated for their chemical characteristics and oil emulsions for cell suppression potential against colon adenocarcinoma (LoVo), doxorubicin-resistant colon adenocarcinoma (LoVo/DX), breast cancer (MCF7), doxorubicin-resistant breast cancer (MCF7/DX), and lung cancer (A549) cell lines. The cytotoxicity was also assessed on normal human dermal fibroblasts (NHDFs). With increasing concentration of raspberry oil emulsions (0.5–10%), increasing inhibition of cancer cell viability and proliferation in all of the lines was observed, with different degrees of potency between cancer types and oil tested. ROSCO2 strongly induced free radical production and DNA strand damage in LoVo and MCF7 cells especially doxorubicin-resistant lines. This suggests that ROSCO2 engages and effectively targets the vulnerabilities of the cancer cell. Generally, both ROSCO2 and ROCOP could be a nontoxic support in therapy of selected human cancers

    Evaluation of Recovery Methods for <i>Fragaria vesca</i> L. Oil: Characteristics, Stability and Bioactive Potential

    No full text
    Wild strawberry (Fragaria vesca L.) seed oil (WSO) recovered by two methods—cold pressing (CP) and extraction with supercritical carbon dioxide (SCO2E)—taking into account the different extraction times, was characterized for its composition and quality. The cytotoxicity assessment of WSOs was also carried out using the normal human dermal fibroblast (NHDF) cell line. Tocopherol and total polyphenol contents were significantly higher in WSO recovered by SCO2E, up to 1901.0 and 58.5 mg/kg, respectively, in comparison with CP oil. In CP oil, the highest content of carotenoids and squalene was determined (123.8 and 31.4 mg/kg, respectively). Phytosterol summed up to 5396 mg/kg in WSO collected in 30 min of SCO2E. Moreover, the highest oxidative stability was found for this oil. All studied WSOs were non-cytotoxic in lactate dehydrogenase (LDH) leaching and sulforhodamine B (SRB) assays; however, oils collected by SCO2E in 15 and 30 min were found to be cytotoxic in the tetrazolium salt (MTT) test, with the CC50 at a concentration of 3.4 and 5.5%, respectively. In conclusion, the composition of WSO indicates that, depending on the method of its recovery, seeds can have different bio-potencies and various applications
    corecore