6 research outputs found

    Effect of Six Different Feedstocks on Biochar’s Properties and Expected Stability

    No full text
    Biochar (BC) is often proposed as a tool for climate change mitigation, due to the expected long lifetime in the environment. However, BC’s stability can vary depending on feedstock type and the presence of labile carbon fractions. In this study, we verify the recent methods with new possible tools for biochar stability assessment on six different biochars derived from commonly available Europe biomass sources. Elemental composition (CHNO), dissolved organic carbon (DOC) and water-soluble carbonates content (WSC), volatile organic compounds (VOCs) composition, and mid-infrared spectra (MIR) were performed to estimate the persistence of biochars. Under similar conditions of pyrolysis, biochar properties can vary depending on a feedstock origin. Less aromatic structure and higher contents of labile carbon fractions (DOCs and WSC) in food waste biochars affected the lower stability, while biochars derived from high lignocellulose materials (straw, wood, and grass) were strongly carbonized, with persistent, aromatic structure. Labile carbon pool content (DOC, WSC) and spectral analysis can be useful tools for biochar stability assessment, giving similar information to the standard molar ratio method. Biochars obtained from agriculture and forestry management biomass should be considered as highly stable in soil and are appropriate for long-term carbon sequestration purposes

    Effect of Six Different Feedstocks on Biochar’s Properties and Expected Stability

    No full text
    Biochar (BC) is often proposed as a tool for climate change mitigation, due to the expected long lifetime in the environment. However, BC’s stability can vary depending on feedstock type and the presence of labile carbon fractions. In this study, we verify the recent methods with new possible tools for biochar stability assessment on six different biochars derived from commonly available Europe biomass sources. Elemental composition (CHNO), dissolved organic carbon (DOC) and water-soluble carbonates content (WSC), volatile organic compounds (VOCs) composition, and mid-infrared spectra (MIR) were performed to estimate the persistence of biochars. Under similar conditions of pyrolysis, biochar properties can vary depending on a feedstock origin. Less aromatic structure and higher contents of labile carbon fractions (DOCs and WSC) in food waste biochars affected the lower stability, while biochars derived from high lignocellulose materials (straw, wood, and grass) were strongly carbonized, with persistent, aromatic structure. Labile carbon pool content (DOC, WSC) and spectral analysis can be useful tools for biochar stability assessment, giving similar information to the standard molar ratio method. Biochars obtained from agriculture and forestry management biomass should be considered as highly stable in soil and are appropriate for long-term carbon sequestration purposes

    Humic Substances as Indicator of Degradation Rate of Chernozems in South-Eastern Poland

    No full text
    Unfavourable quantitative and qualitative changes of soil organic matter result from degradation processes, such as water erosion connected with intense arable land use. In order to take adequate preventive action, the proper indicators of soil quality or degradation are urgently needed. In particular, tests considering the soil organic matter quality seem to be beneficial for soil monitoring. In this paper, we performed organic matter fractionation using the Tyurin and IHSS procedures on eight profiles of chernozemic soils (non-degraded, eroded, forest and accumulative soils). The study conducted confirmed the applicability of using humic and fulvic fractions in order to determine the pedogenesis processes and degradation rates of chernozemic soils. For example, the HA/FA ratio was higher in non-eroded and accumulative soils, compared with eroded or forest profiles. These findings were supported by statistical discrimination performed on the mid-infrared spectra of humic acids extracted from the selected profiles. Groups of samples were divided into classes depending on land usage or degradation rate. Considering the results, fractions of humic substances can be recommended as useful tools for the assessment of soil transformation

    Mid-Infrared Spectroscopy Supports Identification of the Origin of Organic Matter in Soils

    No full text
    Spectroscopic methods combined with statistics have recently gathered substantial interest in pedological studies. Near-infrared (NIR) spectroscopy has been utilized, for example, for reconstructions of the history and transformations of Chernozems, although no similar research was conducted based on mid-infrared (MIR). In this paper, the relevance of MIR spectroscopy was tested in studies on the origin/affinity of organic matter from chernozemic soils. Samples collected from three vegetation classes (grasslands, forests and arable lands) were investigated using MIR spectroscopy in order to create a statistical model, which was applied on buried profiles of unknown origin. The results showed a clear disjunction of vegetation classes. Samples of buried soil were placed in the space between all classes, indicating the relation to variable vegetation. Therefore, arable lands should not be omitted in paleoecological reconstructions, because we cannot exclude the cultivation of fertile soils before their burial. It was concluded that MIR methods may have similar applicability to NIR spectroscopy. Additionally, MIR spectra may also be discriminated according to the recognized soil type, which allows for direct reconstructions of the transformation trends in buried profiles

    Wheat Straw Biochar and NPK Fertilization Efficiency in Sandy Soil Reclamation

    No full text
    Intensive land use including cultivation may result in soil degradation. Restoring natural conditions or utility values called reclamation usually requires prior improvement of soil properties by using fertilizers or soil amendments. Special attention is paid to biochar, as it can improve soil physical and chemical properties. Therefore, amendment is potentially useful for preparation of degraded soil for future vegetation. In pot experiments, we studied the effect of wheat straw biochar (5% v/w) (soil with biochar (S + BC)), two rates of mineral fertilizer (no fertilizer as a control set (SC) and single initial dose of fertilizer (S + NPK)), and combination of biochar and fertilizer (S + B C + NPK) on sandy soil properties and grass growth. Biochar significantly increased soil pH, total organic carbon content (TOC), and volumetric water content (VWC, +24% after one week of measurements). However, dry mass of grass shoots was lower in S + BC than in SC (−38%). It was also observed that, in fertilizer, applied sets high concentrations of salts caused crust formation, surface cracking, and overdrying. Considering the results, biochar may be useful for increasing sandy substrate fertility, providing proper conditions for revegetation during reclamation

    Biochar Improves Maize Growth but Has a Limited Effect on Soil Properties: Evidence from a Three-Year Field Experiment

    No full text
    Biochar application is reported as a method for improving physical and chemical soil properties, with a still questionable impact on the crop yields and quality. Plant productivity can be affected by biochar properties and soil conditions. High efficiency of biochar application was reported many times for plant cultivation in tropical and arid climates; however, the knowledge of how the biochar affects soils in temperate climate zones exhibiting different properties is still limited. Therefore, a three-year-long field experiment was conducted on a loamy Haplic Luvisol, a common arable soil in Central Europe, to extend the laboratory-scale experiments on biochar effectiveness. A low-temperature pinewood biochar was applied at the rate of 50 t h−1, and maize was selected as a tested crop. Biochar application did not significantly impact the chemical soil properties and fertility of tested soil. However, biochar improved soil physical properties and water retention, reducing plant water stress during hot dry summers, and thus resulting in better maize growth and higher yields. Limited influence of the low-temperature biochar on soil properties suggests the crucial importance of biochar-production technology and biochar properties on the effectiveness and validity of its application in agriculture
    corecore