272 research outputs found
Study of drag and orientation of regular particles using stereo vision, Schlieren photography and digital image processing
© 2017 Elsevier B.V.A new experimental, image-based methodology suitable to track the changes in orientation of non-spherical particles and their influence on the drag coefficient as they settle in fluids is presented. Given the fact that non-spherical solids naturally develop variations in their angular orientation during the fall, none-intrusiveness of the technique of analysis is of paramount importance in order to preserve the particle/fluid interaction undisturbed. Three-dimensional quantitative data about the motion parameters is obtained through single-camera stereo vision whilst qualitative visualizations of the adjacent fluid patterns are achieved with Schlieren photography. The methodology was validated by comparing the magnitudes of the drag coefficient of a set of spherical particles at terminal velocity conditions against those estimated from drag correlations published in the literature. A noteworthy similarity was attained. During the fall of non-spherical solids, once the particle Reynolds number approximated 163 for disks, and 240 for cylinders, or exceeded those values, secondary motions composed by regular oscillations and tumbling were present. They altered the angular orientation of the particles with respect to the main motion direction and caused complete turbulent patterns in the surrounding flow, therefore affecting the instantaneous projected area, drag force, and coefficient of resistance. The impact of the changes in angular orientation onto the drag coefficient was shown graphically as a means for reinforcing existing numerical approaches, however, an explicit relation between both variables could not be observed
Pseudomonas Aeruginosa-Derived Rhamnolipids and Other Detergents Modulate Colony Morphotype and Motility in the Burkholderia Cepacia Complex
Competitive interactions mediated by released chemicals (e.g., toxins) are prominent in multispecies communities, but the effects of these chemicals at subinhibitory concentrations on susceptible bacteria are poorly understood. Although Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc) can exist together as a coinfection in cystic fibrosis airways, P. aeruginosa toxins can kill Bcc species in vitro. Consequently, these bacteria become an ideal in vitro model system to study the impact of sublethal levels of toxins on the biology of typical susceptible bacteria, such as the Bcc, when exposed to P. aeruginosa toxins. Using P. aeruginosa spent medium as a source of toxins, we showed that a small window of subinhibitory concentrations modulated the colony morphotype and swarming motility of some but not all tested Bcc strains, for which rhamnolipids were identified as the active molecule. Using a random transposon mutagenesis approach, we identified several genes required by the Bcc to respond to low concentrations of rhamnolipids and consequently affect the ability of this microbe to change its morphotype and swarm over surfaces. Among those genes identified were those coding for type IVb-Tad pili, which are often required for virulence in various bacterial pathogens. Our study demonstrates that manipulating chemical gradients in vitro can lead to the identification of bacterial behaviors relevant to polymicrobial infections
Guidance on the assessment of the toxigenic potential of <em>Bacillus</em> species used in animal nutrition
Bacillus species are used in animal production directly as microbial feed additives or as the source of other feed additives, notably enzymes. The principal safety concern for consumers and, to a lesser extent livestock, associated with Bacillus is a capacity for toxin production. However, the capacity for toxin production and the nature of the toxins produced is unevenly distributed over the genus, occurring frequently in some species and more rarely in others. In principle, the selection of strains belonging to the B. cereus taxonomic group for direct use in animal production is considered inadvisable. If, however, they are proposed then the full genome should be sequenced and a bioinformatic analysis made to search for genes coding for enterotoxins and cereulide synthase. If there is evidence of homology, the non-functionality of the genes (e.g. mutation, deletion) must be demonstrated. For other species, concerns appear to be associated to the production of surfactin like-lipopeptides, although the relation between the presence of these compounds and/or other toxic factors and the risk of illness in human has not yet been established. In the absence of animal models shown to be able to distinguish hazardous from non hazardous strains, the FEEDAP Panel relies on the use of in vitro cell-based methods to detect evidence of a cytotoxic effect. Such tests should be made with culture supernatants since the concentration of cells obtained in a broth culture would always exceed that found in animal food products. If the strain proves to be cytotoxic it is not recommended for use
Potassium‐ion‐selective fluorescent sensors to detect cereulide, the emetic toxin of B. cereus, in food samples and HeLa cells
We report the development of new chemical probes for cereulide, a toxic metabolite produced by specific strains of Bacillus cereus, through displacement of potassium cations from a preformed specific complex and a subsequent change in the fluorescence emission. For this purpose, we designed fluorescent probes for potassium cations that were suitable for displacement assays with cereulide from organic extracts. The fluorescence detection of natural cereulide in rice samples was achieved by using synthetic cereulide as a reference and a potassium fluorescent reporter, and this was found to be useful as a portable and fast method for the in situ detection of cereulide in food extracts. To study the fate of cereulide in live cells, we designed a procedure that was suitable for live‐cell microscopy imaging of HeLa cells by comparing the cellular location of the potassium fluorogenic probe, which stained intracellular endolysosomes, in the absence and presence of cereulide; we concluded that in the presence of cereulide, the fluorescence of the probe was decreased because of complexation of the potassium ions by cereulide.Ministerio
de Econom&a y Competitividad, Spain (Projects CTQ2015-71353-R
and AES-PI16/000496), Junta de Castilla y Lejn, Consejer&a de Educaci
jn y Cultura y Fondo Social Europeo (Project BU232U13),
and the European Commission, Seventh Framework Programme
(Project SNIFFER FP7-SEC-2012–312411
New Peptides Isolated from Lyngbya Species: A Review
Cyanobacteria of the genus Lyngbya have proven to be prodigious producers of secondary metabolites. Many of these compounds are bioactive and show potential for therapeutic use. This review covers peptides and hybrid polyketide-non-ribosomal peptides isolated from Lyngbya species. The structures and bioactivities of 50 Lyngbya peptides which were reported since 2007 are presented
Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies
Haydon and Guest (Haydon, D. J, and Guest, J. R. (1991) FEMS Microbiol Lett. 63, 291-295) first described the helix-turn-helix GntR family of bacterial regulators. They presented them as transcription factors sharing a similar N-terminal DNA-binding (D-b) domain, but they observed near-maximal divergence in the C-terminal effector-binding and oligomerization (E-b/O) domain. To elucidate this C-terminal heterogeneity, structural, phylogenetic, and functional analyses were performed on a family that now comprises about 270 members. Our comparative study first focused on the C-terminal E-b/O domains and next on DNA-binding domains and palindromic operator sequences, has classified the GntR members into four subfamilies that we called FadR, HutC, MocR, and YtrA. Among these subfamilies a degree of similarity of about 55% was observed throughout the entire sequence. Structure/function associations were highlighted although they were not absolutely stringent. The consensus sequences deduced for the DNA-binding domain were slightly different for each subfamily, suggesting that fusion between the D-b and E-b/O domains have occurred separately, with each subfamily having its own D-b domain ancestor. Moreover, the compilation of the known or predicted palindromic cis-acting elements has highlighted different operator sequences according to our subfamily subdivision. The observed C-terminal E-b/O domain heterogeneity was therefore reflected on the DNA-binding domain and on the cis-acting elements, suggesting the existence of a tight link between the three regions involved in the regulating process.Peer reviewe
Linking species concepts to natural product discovery in the post-genomic era
A widely accepted species concept for bacteria has yet to be established. As a result, species designations are inconsistently applied and tied to what can be considered arbitrary metrics. Increasing access to DNA sequence data and clear evidence that bacterial genomes are dynamic entities that include large numbers of horizontally acquired genes have added a new level of insight to the ongoing species concept debate. Despite uncertainties over how to apply species concepts to bacteria, there is clear evidence that sequence-based approaches can be used to resolve cohesive groups that maintain the properties of species. This cohesion is clearly evidenced in the genus Salinispora, where three species have been discerned despite very close relationships based on 16S rRNA sequence analysis. The major phenotypic differences among the three species are associated with secondary metabolite production, which occurs in species-specific patterns. These patterns are maintained on a global basis and provide evidence that secondary metabolites have important ecological functions. These patterns also suggest that an effective strategy for natural product discovery is to target the cultivation of new Salinispora taxa. Alternatively, bioinformatic analyses of biosynthetic genes provide opportunities to predict secondary metabolite novelty and reduce the redundant isolation of well-known metabolites. Although much remains to be learned about the evolutionary relationships among bacteria and how fundamental units of diversity can be resolved, genus and species descriptions remain the most effective method of scientific communication
A Tropical Marine Microbial Natural Products Geobibliography as an Example of Desktop Exploration of Current Research Using Web Visualisation Tools
Microbial marine biodiscovery is a recent scientific endeavour developing at a time when information and other technologies are also undergoing great technical strides. Global visualisation of datasets is now becoming available to the world through powerful and readily available software such as Worldwind™, ArcGIS Explorer™ and Google Earth™. Overlaying custom information upon these tools is within the hands of every scientist and more and more scientific organisations are making data available that can also be integrated into these global visualisation tools. The integrated global view that these tools enable provides a powerful desktop exploration tool. Here we demonstrate the value of this approach to marine microbial biodiscovery by developing a geobibliography that incorporates citations on tropical and near-tropical marine microbial natural products research with Google Earth™ and additional ancillary global data sets. The tools and software used are all readily available and the reader is able to use and install the material described in this article
- …