69 research outputs found
Effect of surfactant alkyl chain length on the dispersion, and thermal and dynamic mechanical properties of LDPE/organo-LDH composites
Low density polyethylene/layered double hydroxide (LDH) composites were prepared via melt compounding using different kinds of organo-LDHs and polyethylene-grafted maleic anhydride as the compatibilizer. The organo-LDHs were successfully prepared by converting a commercial MgAl-carbonate LDH into a MgAl-nitrate LDH, which was later modified by anion exchange with linear and branched sodium alkyl sulfates having different alkyl chain lengths (nc = 6, 12 and 20). It was observed that, depending on the size of the surfactant alkyl chain, different degrees of polymer chain inter- calation were achieved, which is a function of the interlayer distance of the organo-LDHs, of the packing level of the alkyl chains, and of the different interaction levels between the surfactant and the polymer chains. In particular, when the number of carbon atoms of the surfactant alkyl chain is larger than 12, the intercalation of polymer chains in the interlayer space and depression of the formation of large aggregates of organo-LDH platelets are favored. A remarkable improvement of the thermal-oxidative degradation was evidenced for all of the composites; whereas only a slight increase of the crystallization temperature and no significant changes of both melting temperature and degree of crystallinity were achieved. By thermo- dynamic mechanical analysis, it was evidenced that a softening of the matrix is may be due to the plasticizing effect of the surfactant
Electrically Conductive Compounds of Polycarbonate, Liquid Crystalline Polymer, and Multiwalled Carbon Nanotubes
A thermotropic liquid crystalline polymer (LCP) was blended with polycarbonate (PC) and multiwalled carbon nanotube (CNT) with the goal of improving electrical conductivity and mechanical properties over PC. The LCP was anticipated to produce fibrillar domains in PC and help improve the mechanical properties. The study was carried out using two grades of LCP—Vectra A950 (VA950) and Vectra V400P (V400P). The compounds contained 20 wt% LCP and 0.5 to 15 wt% CNT. The compounds were prepared by melt-blending in a twin-screw minicompounder and then injection molded using a mini-injection molder. The fibrillar domains of LCP were found only in the case of PC/VA950 blend. However, these fibrils turned into droplets in the presence of CNT. It was found that CNT preferentially remained inside the LCP domains as predicted from the value of spreading coefficient. The electrical conductivity showed the following order with the numbers in parenthesis representing the electrical percolation threshold of the compounds: PC/CNT (1%) > PC/VA950P/CNT (1%) > PC/V400P/CNT (3%). The storage modulus showed improvements with the addition of CNT and VA950
Silk sericin-polylactide protein-polymer conjugates as biodegradable amphiphilic material and its application in drug release systems
Silk sericin (SS) is a byproduct of silk production. In order to transform it into value-added products, sericin can be used as a biodegradable and pH-responsive building block in drug delivery materials. To this end, amphiphilic substances were synthesized via the conjugation of hydrophobic polylactide (PLA) to the hydrophilic sericin using a bis-aryl hydrazone linker. PLA was esterified with a terephthalaldehydic acid to obtain aromatic aldehyde terminated PLA (PLA-CHO). In addition, lysine groups of SS were modified with the linker succinimidyl-6-hydrazino-nicotinamide (S-HyNic). Then, both macromolecules were mixed to form the amphipilic protein-polymer conjugate in buffer-DMF solution. The formation of bis-aryl hydrazone linkages was confirmed and quantified by UV-vis spectroscopy. SS-PLA conjugates self-assembled in water into spherical multicompartment micelles with a diameter of around 100 nm. Doxorubicin (DOX) was selected as a model drug for studying the pH-dependent drug release from SS-PLA nanoparticles. The release rate of the encapsulated drug was slower than that of the free drug and dependent on pH, faster at pH 5.0, and it resulted in a larger cumulative amount of drug released than at physiological pH of 7.4. The SS-PLA conjugate of high PLA branches showed smaller particle size and lower loading capacity than the one with low PLA branches. Both SS-PLA conjugates had negligible cytotoxicity, whereas after loading with DOX, the SS-PLA micelles were highly toxic for the human liver carcinoma immortalized cell line HepG2. Therefore, the SS-based biodegradable amphiphilic material showed great potential as a drug carrier for cancer therapy
- …