2 research outputs found

    Influence of Pyrolysis Parameters on the Performance of CMSM

    Get PDF
    Carbon hollow fiber membranes have been prepared by pyrolysis of a P84/S-PEEK blend. Proximate analysis of the precursor was performed using thermogravimetry (TGA), and a carbon yield of approximately 40% can be obtained. This study aimed at understanding the influence of pyrolysis parametersā€”end temperature, quenching effect, and soaking timeā€”on the membrane properties. Permeation experiments were performed with N2, He, and CO2. Scanning electron microscopy (SEM) has been done for all carbon hollow fibers. The highest permeances were obtained for the membrane submitted to an end temperature of 750Ā°C and the highest ideal selectivities for an end temperature of 700Ā°C. In both cases, the membranes were quenched to room temperatur

    Graphene-based materials biocompatibility: A review

    No full text
    Graphene-based materials (GBMs) have broad potential applications in biomedical engineering and biotechnology. However, existing studies regarding biological effects of GBMs often present contradictory or inconclusive results. This work presents a review of published data in order to provide a critical overview of the state of the art. Firstly, the distinct physical-chemical nature of the GBMs available is clarified, as well as the production methods involved. The review then discusses the available in vitro (with bacterial and mammalian cells) and in vivo studies concerning evaluation of GBMs biocompatibility, as well as existing hemocompatibility studies. The biocompatibility issues concerning composite materials that incorporate GBMs are addressed in a separate section, since encapsulation in a polymer matrix modifies biological interactions. The most pertinent questions that should be addressed in future works are also emphasized
    corecore