270 research outputs found
Nonequilibrium Linear Response for Markov Dynamics, II: Inertial Dynamics
We continue our study of the linear response of a nonequilibrium system. This
Part II concentrates on models of open and driven inertial dynamics but the
structure and the interpretation of the result remain unchanged: the response
can be expressed as a sum of two temporal correlations in the unperturbed
system, one entropic, the other frenetic. The decomposition arises from the
(anti)symmetry under time-reversal on the level of the nonequilibrium action.
The response formula involves a statistical averaging over explicitly known
observables but, in contrast with the equilibrium situation, they depend on the
model dynamics in terms of an excess in dynamical activity. As an example, the
Einstein relation between mobility and diffusion constant is modified by a
correlation term between the position and the momentum of the particle
A nonequilibrium extension of the Clausius heat theorem
We generalize the Clausius (in)equality to overdamped mesoscopic and
macroscopic diffusions in the presence of nonconservative forces. In contrast
to previous frameworks, we use a decomposition scheme for heat which is based
on an exact variant of the Minimum Entropy Production Principle as obtained
from dynamical fluctuation theory. This new extended heat theorem holds true
for arbitrary driving and does not require assumptions of local or close to
equilibrium. The argument remains exactly intact for diffusing fields where the
fields correspond to macroscopic profiles of interacting particles under
hydrodynamic fluctuations. We also show that the change of Shannon entropy is
related to the antisymmetric part under a modified time-reversal of the
time-integrated entropy flux.Comment: 23 pages; v2: manuscript significantly extende
Partially ordered models
We provide a formal definition and study the basic properties of partially
ordered chains (POC). These systems were proposed to model textures in image
processing and to represent independence relations between random variables in
statistics (in the later case they are known as Bayesian networks). Our chains
are a generalization of probabilistic cellular automata (PCA) and their theory
has features intermediate between that of discrete-time processes and the
theory of statistical mechanical lattice fields. Its proper definition is based
on the notion of partially ordered specification (POS), in close analogy to the
theory of Gibbs measure. This paper contains two types of results. First, we
present the basic elements of the general theory of POCs: basic geometrical
issues, definition in terms of conditional probability kernels, extremal
decomposition, extremality and triviality, reconstruction starting from
single-site kernels, relations between POM and Gibbs fields. Second, we prove
three uniqueness criteria that correspond to the criteria known as bounded
uniformity, Dobrushin and disagreement percolation in the theory of Gibbs
measures.Comment: 54 pages, 11 figures, 6 simulations. Submited to Journal of Stat.
Phy
Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats
We discuss the Donsker-Varadhan theory of large deviations in the framework
of Hamiltonian systems thermostated by a Gaussian stochastic coupling. We
derive a general formula for the Donsker-Varadhan large deviation functional
for dynamics which satisfy natural properties under time reversal. Next, we
discuss the characterization of the stationary state as the solution of a
variational principle and its relation to the minimum entropy production
principle. Finally, we compute the large deviation functional of the current in
the case of a harmonic chain thermostated by a Gaussian stochastic coupling.Comment: Revised version, published in Journal of Statistical Physic
Fluctuation Theorems for Entropy Production and Heat Dissipation in Periodically Driven Markov Chains
Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry
in the rate function of either the time-averaged entropy production or heat
dissipation of a process. Such theorems have been proved for various general
classes of continuous-time deterministic and stochastic processes, but always
under the assumption that the forces driving the system are time independent,
and often relying on the existence of a limiting ergodic distribution. In this
paper we extend the asymptotic fluctuation theorem for the first time to
inhomogeneous continuous-time processes without a stationary distribution,
considering specifically a finite state Markov chain driven by periodic
transition rates. We find that for both entropy production and heat
dissipation, the usual Gallavotti-Cohen symmetry of the rate function is
generalized to an analogous relation between the rate functions of the original
process and its corresponding backward process, in which the trajectory and the
driving protocol have been time-reversed. The effect is that spontaneous
positive fluctuations in the long time average of each quantity in the forward
process are exponentially more likely than spontaneous negative fluctuations in
the backward process, and vice-versa, revealing that the distributions of
fluctuations in universes in which time moves forward and backward are related.
As an additional result, the asymptotic time-averaged entropy production is
obtained as the integral of a periodic entropy production rate that generalizes
the constant rate pertaining to homogeneous dynamics
Entropy and Nonlinear Nonequilibrium Thermodynamic Relation for Heat Conducting Steady States
Among various possible routes to extend entropy and thermodynamics to
nonequilibrium steady states (NESS), we take the one which is guided by
operational thermodynamics and the Clausius relation. In our previous study, we
derived the extended Clausius relation for NESS, where the heat in the original
relation is replaced by its "renormalized" counterpart called the excess heat,
and the Gibbs-Shannon expression for the entropy by a new symmetrized
Gibbs-Shannon-like expression. Here we concentrate on Markov processes
describing heat conducting systems, and develop a new method for deriving
thermodynamic relations. We first present a new simpler derivation of the
extended Clausius relation, and clarify its close relation with the linear
response theory. We then derive a new improved extended Clausius relation with
a "nonlinear nonequilibrium" contribution which is written as a correlation
between work and heat. We argue that the "nonlinear nonequilibrium"
contribution is unavoidable, and is determined uniquely once we accept the
(very natural) definition of the excess heat. Moreover it turns out that to
operationally determine the difference in the nonequilibrium entropy to the
second order in the temperature difference, one may only use the previous
Clausius relation without a nonlinear term or must use the new relation,
depending on the operation (i.e., the path in the parameter space). This
peculiar "twist" may be a clue to a better understanding of thermodynamics and
statistical mechanics of NESS.Comment: 31 pages, 4 figure
Vortices in the two-dimensional Simple Exclusion Process
We show that the fluctuations of the partial current in two dimensional
diffusive systems are dominated by vortices leading to a different scaling from
the one predicted by the hydrodynamic large deviation theory. This is supported
by exact computations of the variance of partial current fluctuations for the
symmetric simple exclusion process on general graphs. On a two-dimensional
torus, our exact expressions are compared to the results of numerical
simulations. They confirm the logarithmic dependence on the system size of the
fluctuations of the partialflux. The impact of the vortices on the validity of
the fluctuation relation for partial currents is also discussed.Comment: Revised version to appear in Journal of Statistical Physics. Minor
correction
Nitrogen source apportionment for the catchment, estuary and adjacent coastal waters of the Scheldt.
Using the systems approach framework (SAF), a coupled model suite was developed for simulating land-use decision making in response to nutrient abatement costs and water and nutrient fluxes in the hydrological network of the Scheldt River, and nutrient fluxes in the estuary and adjacent coastal sea. The purpose was to assess the efficiency of different long-term water quality improvement measures in current and future climate and societal settings, targeting nitrogen (N) load reduction. The spatial-dynamic model suite consists of two dynamically linked modules: PCRaster is used for the drainage network and is combined with ExtendSim modules for farming decision making and estuarine N dispersal. Model predictions of annual mean flow and total N concentrations compared well with data available for river and estuary (r² ≥ 0.83). Source apportionment was carried out to societal sectors and administrative regions; both households and agriculture are the major sources of N, with the regions of Flanders and Wallonia contributing most. Load reductions by different measures implemented in the model were comparable (~75% remaining after 30 yr), but costs differed greatly. Increasing domestic sewage connectivity was more effective, at comparatively low cost (47% remaining). The two climate scenarios did not lead to major differences in load compared with the business-as-usual scenario (~88% remaining). Thus, this spatially explicit model of water flow and N fluxes in the Scheldt catchment can be used to compare different long-term policy options for N load reduction to river, estuary, and receiving sea in terms of their effectiveness, cost, and optimal location of implementation
Current large deviations in a driven dissipative model
We consider lattice gas diffusive dynamics with creation-annihilation in the
bulk and maintained out of equilibrium by two reservoirs at the boundaries.
This stochastic particle system can be viewed as a toy model for granular gases
where the energy is injected at the boundary and dissipated in the bulk. The
large deviation functional for the particle currents flowing through the system
is computed and some physical consequences are discussed: the mechanism for
local current fluctuations, dynamical phase transitions, the
fluctuation-relation
'Return to equilibrium' for weakly coupled quantum systems: a simple polymer expansion
Recently, several authors studied small quantum systems weakly coupled to
free boson or fermion fields at positive temperature. All the approaches we are
aware of employ complex deformations of Liouvillians or Mourre theory (the
infinitesimal version of the former). We present an approach based on polymer
expansions of statistical mechanics. Despite the fact that our approach is
elementary, our results are slightly sharper than those contained in the
literature up to now. We show that, whenever the small quantum system is known
to admit a Markov approximation (Pauli master equation \emph{aka} Lindblad
equation) in the weak coupling limit, and the Markov approximation is
exponentially mixing, then the weakly coupled system approaches a unique
invariant state that is perturbatively close to its Markov approximation.Comment: 23 pages, v2-->v3: Revised version: The explanatory section 1.7 has
changed and Section 3.2 has been made more explici
- …