4 research outputs found

    LMPD: LIPID MAPS proteome database

    Get PDF
    The LIPID MAPS Proteome Database (LMPD) is an object-relational database of lipid-associated protein sequences and annotations. The initial release contains 2959 records, representing human and mouse proteins involved in lipid metabolism. UniProt IDs were obtained based on keyword search of KEGG and GO databases, and this LMPD protein list was then enhanced with annotations from UniProt, EntrezGene, ENZYME, GO, KEGG and other public resources. We also assigned associations with general lipid categories, based on GO and KEGG annotations. Users may search LMPD by database ID or keyword, and filter by species and/or lipid class associations; from the search results, one can then access a compilation of data relevant to each protein of interest, cross-linked to external databases. The LIPID MAPS Proteome Database (LMPD) is publicly available from the LIPID MAPS Consortium website (). The direct URL is

    The Alliance for Cellular Signaling Plasmid Collection: A Flexible Resource for Protein Localization Studies and Signaling Pathway Analysis

    Get PDF
    Cellular responses to inputs that vary both temporally and spatially are determined by complex relationships between the components of cell signaling networks. Analysis of these relationships requires access to a wide range of experimental reagents and techniques, including the ability to express the protein components of the model cells in a variety of contexts. As part of the Alliance for Cellular Signaling, we developed a robust method for cloning large numbers of signaling ORFs into Gateway® entry vectors, and we created a wide range of compatible expression platforms for proteomics applications. To date, we have generated over 3000 plasmids that are available to the scientific community via the American Type Culture Collection. We have established a website at www.signaling-gateway.org/data/plasmid/ that allows users to browse, search, and blast Alliance for Cellular Signaling plasmids. The collection primarily contains murine signaling ORFs with an emphasis on kinases and G protein signaling genes. Here we describe the cloning, databasing, and application of this proteomics resource for large scale subcellular localization screens in mammalian cell lines

    Comparative analysis of mycobacterium and related actinomycetes yields insight into the evolution of mycobacterium tuberculosis pathogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sequence of the pathogen <it>Mycobacterium tuberculosis </it>(<it>Mtb</it>) strain <it>H37Rv </it>has been available for over a decade, but the biology of the pathogen remains poorly understood. Genome sequences from other <it>Mtb </it>strains and closely related bacteria present an opportunity to apply the power of comparative genomics to understand the evolution of <it>Mtb </it>pathogenesis. We conducted a comparative analysis using 31 genomes from the Tuberculosis Database (TBDB.org), including 8 strains of <it>Mtb </it>and <it>M. bovis</it>, 11 additional Mycobacteria, 4 Corynebacteria, 2 Streptomyces, <it>Rhodococcus jostii RHA1, Nocardia farcinia, Acidothermus cellulolyticus, Rhodobacter sphaeroides, Propionibacterium acnes</it>, and <it>Bifidobacterium longum</it>.</p> <p>Results</p> <p>Our results highlight the functional importance of lipid metabolism and its regulation, and reveal variation between the evolutionary profiles of genes implicated in saturated and unsaturated fatty acid metabolism. It also suggests that DNA repair and molybdopterin cofactors are important in pathogenic Mycobacteria. By analyzing sequence conservation and gene expression data, we identify nearly 400 conserved noncoding regions. These include 37 predicted promoter regulatory motifs, of which 14 correspond to previously validated motifs, as well as 50 potential noncoding RNAs, of which we experimentally confirm the expression of four.</p> <p>Conclusions</p> <p>Our analysis of protein evolution highlights gene families that are associated with the adaptation of environmental Mycobacteria to obligate pathogenesis. These families include fatty acid metabolism, DNA repair, and molybdopterin biosynthesis. Our analysis reinforces recent findings suggesting that small noncoding RNAs are more common in Mycobacteria than previously expected. Our data provide a foundation for understanding the genome and biology of <it>Mtb </it>in a comparative context, and are available online and through TBDB.org.</p
    corecore