827 research outputs found

    Orbital Compass Model as an Itinerant Electron System

    Full text link
    Two-dimensional orbital compass model is studied as an interacting itinerant electron model. A Hubbard-type tight-binding model, from which the orbital compass model is derived in the strong coupling limit, is identified. This model is analyzed by the random-phase approximation (RPA) and the self-consistent RPA methods from the weak coupling. Anisotropy for the orbital fluctuation in the momentum space is qualitatively changed by the on-site Coulomb interaction. This result is explained by the fact that the dominant fluctuation is changed from the intra-band nesting to the inter-band one by increasing the interaction.Comment: 7 pages, 8 figure

    Spin-Orbital Entanglement and Phase Diagram of Spin-orbital Chain with SU(2)×SU(2)SU(2) \times SU(2) Symmetry

    Get PDF
    Spin-orbital entanglement in quantum spin-orbital systems is quantified by a reduced von Neumann entropy, and is calculated for the ground state of a coupled spin-orbital chain with SU(2)×SU(2)SU(2)\times SU(2) symmetry. By analyzing the discontinuity and local extreme of the reduced entropy as functions of the model parameters, we deduce a rich phase diagram to describe the quantum phase transitions in the model. Our approach provides an efficient and powerful method to identify phase boundaries in a system with complex correlation between multiply degrees of freedom.Comment: 4 pages, 3 figure

    Residual Kondo effect in quantum dot coupled to half-metallic ferromagnets

    Full text link
    We study the Kondo effect in a quantum dot coupled to half-metallic ferromagnetic electrodes in the regime of strong on-dot correlations. Using the equation of motion technique for nonequilibrium Green functions in the slave boson representation we show that the Kondo effect is not completely suppressed for anti-parallel leads magnetization. In the parallel configuration there is no Kondo effect but there is an effect associated with elastic cotunneling which in turn leads to similar behavior of the local (on-dot) density of states (LDOS) as the usual Kondo effect. Namely, the LDOS shows the temperature dependent resonance at the Fermi energy which splits with the bias voltage and the magnetic field. Moreover, unlike for non-magnetic or not fully polarized ferromagnetic leads the only minority spin electrons can form such resonance in the density of states. However, this resonance cannot be observed directly in the transport measurements and we give some clues how to identify the effect in such systems.Comment: 15 pages, 8 figures, accepted for publication in J. Phys.: Condens. Mat

    Constraining Proton Lifetime in SO(10) with Stabilized Doublet-Triplet Splitting

    Get PDF
    We present a class of realistic unified models based on supersymmetric SO(10) wherein issues related to natural doublet-triplet (DT) splitting are fully resolved. Using a minimal set of low dimensional Higgs fields which includes a single adjoint, we show that the Dimopoulos--Wilzcek mechanism for DT splitting can be made stable in the presence of all higher order operators without having pseudo-Goldstone bosons and flat directions. The \mu term of order TeV is found to be naturally induced. A Z_2-assisted anomalous U(1)_A gauge symmetry plays a crucial role in achieving these results. The threshold corrections to alpha_3(M_Z), somewhat surprisingly, are found to be controlled by only a few effective parameters. This leads to a very predictive scenario for proton decay. As a novel feature, we find an interesting correlation between the d=6 (p\to e^+\pi^0) and d=5 (p\to \nu-bar K+) decay amplitudes which allows us to derive a constrained upper limit on the inverse rate of the e^+\pi^0 mode. Our results show that both modes should be observed with an improvement in the current sensitivity by about a factor of five to ten.Comment: 21 pages LaTeX, 2 figures, Few explanatory sentences and three new references added, minor typos corrected

    Angle-resolved photoemission study of insulating and metallic Cu-O chains in PrBa2_2Cu3_3O7_7 and PrBa2_2Cu4_4O8_8

    Full text link
    We compare the angle-resolved photoemission spectra of the hole-doped Cu-O chains in PrBa2_2Cu3_3O7_7 (Pr123) and in PrBa2_2Cu4_4O8_8 (Pr124). While, in Pr123, a dispersive feature from the chain takes a band maximum at kbk_b (momentum along the chain) ∼\sim π/4\pi/4 and loses its spectral weight around the Fermi level, it reaches the Fermi level at kbk_b ∼\sim π/4\pi/4 in Pr124. Although the chains in Pr123 and Pr124 are approximately 1/4-filled, they show contrasting behaviors: While the chains in Pr123 have an instability to charge ordering, those in Pr124 avoid it and show an interesting spectral feature of a metallic coupled-chain system.Comment: 4 pages, 5 figures, to be published in PR

    Angle-resolved photoemission study of untwinned PrBa2_2Cu3_3O7_7: undoped CuO2_2 plane and doped CuO3_3 chain

    Full text link
    We have performed an angle-resolved photoemission study on untwinned PrBa2_2Cu3_3O7_7, which has low resistivity but does not show superconductivity. We have observed a dispersive feature with a band maximum around (π\pi/2,π\pi/2), indicating that this band is derived from the undoped CuO2_2 plane. We have observed another dispersive band exhibiting one-dimensional character, which we attribute to signals from the doped CuO3_3 chain. The overall band dispersion of the one-dimensional band agrees with the prediction of t−Jt-J model calculation with parameters relevant to cuprates except that the intensity near the Fermi level is considerably suppressed in the experiment.Comment: 6 pages, 10 figure

    Superconducting Gap and Strong In-Plane Anisotropy in Untwinned YBa2Cu3O7-d

    Full text link
    With significantly improved sample quality and instrumental resolution, we clearly identify in the (pi,0) ARPES spectra from YBa2Cu3O6.993, in the superconducting state, the long-sought `peak-dip-hump' structure. This advance allows us to investigate the large a-b anisotropy of the in-plane electronic structure including, in particular, a 50% difference in the magnitude of the superconducting gap that scales with the energy position of the hump feature. This anisotropy, likely induced by the presence of the CuO chains, raises serious questions about attempts to quantitatively explain the YBa2Cu3O7-d data from various experiments using models based on a perfectly square lattice.Comment: Phys. Rev. Lett., in press. Revtex, 4 pages, 4 postscript figures embedded in the tex

    Electronic States and Superconductivity in Multi-layer High-Tc Cuprates

    Full text link
    We study electronic states of multilayer cuprates in the normal phases as functions of the number of CuO_2 planes and the doping rate. The resonating valence bond wave function and the Gutzwiller approximation are used for a two-dimensional multilayer t-t'-t''-J model. We calculate the electron-removal spectral functions at (\pi,0) in the CuO_2 plane next to the surface to understand the angle-resolved photoemission spectroscopy (ARPES) spectra. We find that the trilayer spectrum is narrower than the bilayer spectrum but is wider than the monolayer spectrum. In the tri- and tetralayer systems, the outer CuO_2 plane has different superconducting amplitude from the inner CuO_2 plane, while each layer in the bilayer systems has same amplitude. The recent ARPES and NMR experiments are discussed in the light of the present theory.Comment: 7 pages, 7 figure

    Polarization Dependence of Anomalous X-ray Scattering in Orbital Ordered Manganites

    Full text link
    In order to determine types of the orbital ordering in manganites, we study theoretically the polarization dependence of the anomalous X-ray scattering which is caused by the anisotropy of the scattering factor. The general formulae of the scattering intensity in the experimental optical system is derived and the atomic scattering factor is calculated in the microscopic electronic model. By using the results, the X-ray scattering intensity in several types of the orbital ordering is numerically calculated as a function of azimuthal and analyzer angles.Comment: 9 pages, 7 figure

    Neutrino Democracy, Fermion Mass Hierarchies And Proton Decay From 5D SU(5)

    Get PDF
    The explanation of various observed phenomena such as large angle neutrino oscillations, hierarchies of charged fermion masses and CKM mixings, and apparent baryon number conservation may have a common origin. We show how this could occur in 5D SUSY SU(5) supplemented by a U(1){\cal U}(1) flavor symmetry and additional matter supermultiplets called 'copies'. In addition, the proton decays into p→Kνp\to K\nu , with an estimated lifetime of order 1033−103610^{33}-10^{36} yrs. Other decay channels include KeKe and KμK\mu with comparable rates. We also expect that BR(μ→eγ)∼(\mu \to e\gamma)\sim BR(τ→μγ)(\tau \to \mu \gamma)
    • …
    corecore