11 research outputs found

    Human Papillomavirus-16 E7 Interacts with Glutathione S-Transferase P1 and Enhances Its Role in Cell Survival

    Get PDF
    Background:Human Papillomavirus (HPV)-16 is a paradigm for "high-risk" HPVs, the causative agents of virtually all cervical carcinomas. HPV E6 and E7 viral genes are usually expressed in these tumors, suggesting key roles for their gene products, the E6 and E7 oncoproteins, in inducing malignant transformation.Methodology/Principal Findings:By protein-protein interaction analysis, using mass spectrometry, we identified glutathione S-transferase P1-1 (GSTP1) as a novel cellular partner of the HPV-16 E7 oncoprotein. Following mapping of the region in the HPV-16 E7 sequence that is involved in the interaction, we generated a three-dimensional molecular model of the complex between HPV-16 E7 and GSTP1, and used this to engineer a mutant molecule of HPV-16 E7 with strongly reduced affinity for GSTP1.When expressed in HaCaT human keratinocytes, HPV-16 E7 modified the equilibrium between the oxidized and reduced forms of GSTP1, thereby inhibiting JNK phosphorylation and its ability to induce apoptosis. Using GSTP1-deficient MCF-7 cancer cells and siRNA interference targeting GSTP1 in HaCaT keratinocytes expressing either wild-type or mutant HPV-16 E7, we uncovered a pivotal role for GSTP1 in the pro-survival program elicited by its binding with HPV-16 E7.Conclusions/Significance:This study provides further evidence of the transforming abilities of this oncoprotein, setting the groundwork for devising unique molecular tools that can both interfere with the interaction between HPV-16 E7 and GSTP1 and minimize the survival of HPV-16 E7-expressing cancer cells. © 2009 Mileo et al

    Simultaneous multiple peptide synthesis: A potent tool for hormone analog studies

    No full text

    Host-defence peptide profiles of the skin secretions of interspecific hybrid tree frogs and their parents, female Litoria splendida and male Litoria caerulea

    No full text
    The definitive version is available at www.blackwell-synergy.comFive healthy adult female first-generation hybrid tree frogs were produced by interspecific breeding of closely related tree frogs Litoria splendida and L. caerulea in a cage containing large numbers of males and females of both species. Phylogenetic analysis of mitochondrial DNA sequences established the female parent to be L. splendida. The peptide profile of the hybrid frogs included the neuropeptide caerulein, four antibiotics of the caerin 1 family and several neuronal nitric oxide synthase inhibitors of the caerin 1 and 2 classes of peptides. The skin secretions of the hybrids contained some peptides common to only one parent, some produced by both parental species, and four peptides expressed by the hybrids but not the parental species.Tara L. Pukala, Terry Bertozzi, Steve C. Donnellan, John H. Bowie, Katharina H. Surinya-Johnson, Yanquin Liu, Rebecca J. Jackway, Jason R. Doyle, Lyndon E. Llewellyn and Michael J. Tyle

    Population trends associated with skin peptide defenses against chytridiomycosis in Australian frogs

    No full text
    Many species of amphibians in the wet tropics of Australia have experienced population declines linked with the emergence of a skin-invasive chytrid fungus, Batrachochytrium dendrobatidis. An innate defense, antimicrobial peptides produced by granular glands in the skin, may protect some species from disease. Here we present evidence that supports this hypothesis. We tested ten synthesized peptides produced by Australian species, and natural peptide mixtures from five Queensland rainforest species. Natural mixtures and most peptides tested in isolation inhibited growth of B. dendrobatidis in vitro. The three most active peptides (caerin 1.9, maculatin 1.1, and caerin 1.1) were found in the secretions of non-declining species (Litoria chloris, L. caerulea, and L. genimaculata). Although the possession of a potent isolated antimicrobial peptide does not guarantee protection from infection, non-declining species (L. lesueuri and L. genimaculata) inhabiting the rainforest of Queensland possess mixtures of peptides that may be more protective than those of the species occurring in the same habitat that have recently experienced population declines associated with chytridiomycosis (L. nannotis, L. rheocola, and Nyctimystes dayi). This study demonstrates that in vitro effectiveness of skin peptides correlates with the degree of decline in the face of an emerging pathogen. Further research is needed to assess whether this non-specific immune defense may be useful in predicting disease susceptibility in other species

    Conformational aspects of oligosaccharides

    No full text
    corecore