3 research outputs found

    Integrating Abstraction Techniques for Formal Verification of Analog Designs

    Get PDF
    The verification of analog designs is a challenging and exhaustive task that requires deep understanding of physical behaviours. In this paper, we propose a qualitative based predicate abstraction method for the verification of a class of non-linear analog circuits. In the proposed method, system equations are automatically extracted from a circuit diagram by means of a bond graph. Verification is applied based on combining techniques from constraint solving and computer algebra along with symbolic model checking. Our methodology has the advantage of avoiding exhaustive simulation normally encountered in the verification of analog designs. To this end, we have used Dymola, Hsolver, SMV and Mathematica to implement the verification flow. We illustrate the methodology on several analog examples including Colpitts and tunnel diode oscillators

    UVM-SystemC-AMS based framework for the correct by construction design of MEMS in their real heterogeneous application context

    No full text
    Each new embedded system tends to integrate more sensors with tight software-driven control, digitally assisted analog circuits, and heterogeneous structure. A more responsive simulation environment is needed to support the co-design and verification of such complex architectures including all its digital hardware/software and analog/multi-physical aspects using Multi-Disciplinary Virtual Prototyping (MDVP). Taking a Micro-Electro-Mechanical System (MEMS) vibration sensor as an example, we introduce a reusable framework based on the state-of-the-art technologies SystemC AMS, Finite Elements/Reduced-Order modeling, and UVM to design, simulate, and verify such systems in their real application context
    corecore