16 research outputs found

    Effective Crystalline Electric Field Potential in a j-j Coupling Scheme

    Full text link
    We propose an effective model on the basis of a jj-jj coupling scheme to describe local ff-electron states for realistic values of Coulomb interaction UU and spin-orbit coupling λ\lambda, for future development of microscopic theory of magnetism and superconductivity in fnf^n-electron systems, where nn is the number of local ff electrons. The effective model is systematically constructed by including the effect of a crystalline electric field (CEF) potential in the perturbation expansion in terms of 1/λ1/\lambda. In this paper, we collect all the terms up to the first order of 1/λ1/\lambda. Solving the effective model, we show the results of the CEF states for each case of nn=2\sim5 with OhO_{\rm h} symmetry in comparison with those of the Stevens Hamiltonian for the weak CEF. In particular, we carefully discuss the CEF energy levels in an intermediate coupling region with λ/U\lambda/U in the order of 0.1 corresponding to actual ff-electron materials between the LSLS and jj-jj coupling schemes. Note that the relevant energy scale of UU is the Hund's rule interaction. It is found that the CEF energy levels in the intermediate coupling region can be quantitatively reproduced by our modified jj-jj coupling scheme, when we correctly take into account the corrections in the order of 1/λ1/\lambda in addition to the CEF terms and Coulomb interactions which remain in the limit of λ\lambda=\infty. As an application of the modified jj-jj coupling scheme, we discuss the CEF energy levels of filled skutterudites with ThT_{\rm h} symmetry.Comment: 12 pages, 7 figures. Typeset with jpsj2.cl

    Spin Fluctuation Induced Superconductivity Controlled by Orbital Fluctuation

    Full text link
    A microscopic Hamiltonian reflecting the correct symmetry of ff-orbitals is proposed to discuss superconductivity in heavy fermion systems. In the orbitally degenerate region in which not only spin fluctuations but also orbital fluctuations develop considerably, cancellation between spin and orbital fluctuations destabilizes dx2y2d_{x^{2}-y^{2}}-wave superconductivity. Entering the non-degenerate region by increasing the crystalline electric field, dx2y2d_{x^{2}-y^{2}}-wave superconductivity mediated by antiferromagnetic spin fluctuations emerges out of the suppression of orbital fluctuations. We argue that the present scenario can be applied to recently discovered superconductors CeTIn5_{5} (T=Ir, Rh, and Co).Comment: 4 pages, 3 figure

    Electronic Structure and Fermiology of PuCoGa5_5

    Full text link
    By using a relativistic linear augmented-plane-wave method, we clarify energy band structures and Fermi surfaces of recently discovered plutonium-based superconductor PuCoGa5_5. We find several cylindrical sheets of Fermi surfaces with large volume, very similar to CeMIn5_5 (M=Ir and Co) isostructural with PuCoGa5_5, in spite of different ff-electron numbers between Ce3+^{3+} and Pu3+^{3+} ions. The similarity is understood by a concept of electron-hole conversion in a tight binding model constructed based on the jj-jj coupling scheme. Based on the present results, we provide a possible scenario to explain why a transition temperature is so high as 18.5K in PuCoGa5_5.Comment: 4 pages, Revtex, with 4 figures embedded in the text. Submitted to Phys. Rev. Let

    Strong-coupling theory of superconductivity in a degenerate Hubbard model

    Full text link
    In order to discuss superconductivity in orbital degenerate systems, a microscopic Hamiltonian is introduced. Based on the degenerate model, a strong-coupling theory of superconductivity is developed within the fluctuation exchange (FLEX) approximation where spin and orbital fluctuations, spectra of electron, and superconducting gap function are self-consistently determined. Applying the FLEX approximation to the orbital degenerate model, it is shown that the dx2y2d_{x^2-y^2}-wave superconducting phase is induced by increasing the orbital splitting energy which leads to the development and suppression of the spin and orbital fluctuations, respectively. It is proposed that the orbital splitting energy is a controlling parameter changing from the paramagnetic to the antiferromagnetic phase with the dx2y2d_{x^2-y^2}-wave superconducting phase in between.Comment: 4 figures, submitted to PR

    Orbital ordering phenomena in dd- and ff-electron systems

    Full text link
    In recent decades, novel magnetism of dd- and ff-electron compounds has been discussed very intensively both in experimental and theoretical research fields of condensed matter physics. It has been recognized that those material groups are in the same category of strongly correlated electron systems, while the low-energy physics of dd- and ff-electron compounds has been separately investigated rather in different manners. One of common features of both dd- and ff-electron systems is certainly the existence of active orbital degree of freedom, but in ff-electron materials, due to the strong spin-orbit interaction in rare-earth and actinide ions, the physics seems to be quite different from that of dd-electron systems. In general, when the number of internal degrees of freedom and relevant interactions is increased, it is possible to obtain rich phase diagram including large varieties of magnetic phases by using several kinds of theoretical techniques. However, we should not be simply satisfied with the reproduction of rich phase diagram. It is believed that more essential point is to seek for a simple principle penetrating complicated phenomena in common with dd- and ff-electron materials, which opens the door to a new stage in orbital physics. In this sense, it is considered to be an important task of this article to explain common features of magnetism in dd- and ff-electron systems from a microscopic viewpoint, using a key concept of orbital ordering, in addition to the review of the complex phase diagram of each material group.Comment: 112 pages, 38 figure

    Microscopic Approach to Magnetism and Superconductivity of ff-Electron Systems with Filled Skutterudite Structure

    Full text link
    In order to gain a deep insight into ff-electron properties of filled skutterudite compounds from a microscopic viewpoint, we investigate the multiorbital Anderson model including Coulomb interactions, spin-orbit coupling, and crystalline electric field effect. For each case of nn=1\sim13, where nn is the number of ff electrons per rare-earth ion, the model is analyzed by using the numerical renormalization group (NRG) method to evaluate magnetic susceptibility and entropy of ff electron. In order to make further step to construct a simplified model which can be treated even in a periodic system, we also analyze the Anderson model constructed based on the jj-jj coupling scheme by using the NRG method. Then, we construct an orbital degenerate Hubbard model based on the jj-jj coupling scheme to investigate the mechanism of superconductivity of filled skutterudites. In the 2-site model, we carefully evaluate the superconducting pair susceptibility for the case of nn=2 and find that the susceptibility for off-site Cooper pair is clearly enhanced only in a transition region in which the singlet and triplet ground states are interchanged.Comment: 14 pages, 11 figures, Typeset with jpsj2.cl

    Orbital-Controlled Superconductivity in f-Electron Systems

    Full text link
    We propose a concept of superconductivity controlled by orbital degree of freedom taking CeMIn5 (M= Co, Rh, and Ir) as typical examples. A microscopic multiorbital model for CeMIn5 is analyzed by fluctuation exchange approximation. Even though the Fermi-surface structure is unchanged, the ground state is found to change significantly among paramagnetic, antiferromagnetic, and d-wave superconducting phases, depending on the dominant orbital component in the band near the Fermi energy. We show that our picture naturally explains the different low-temperature properties of CeMIn5 by carefully analyzing the crystalline electric field states.Comment: 5 pages, 4 figure

    Construction of microscopic model for f-electron systems on the basis of j-j coupling scheme

    Full text link
    We construct a microscopic model for f-electron systems, composed of f-electron hopping, Coulomb interaction, and crystalline electric field (CEF) terms. In order to clarify the meaning of one f-electron state, here the j-j coupling scheme is considered, since the spin-orbit interaction is generally large in f-electron systems. Thus, the f-electron state at each site is labelled by μ\mu, namely, the z-component of total angular momentum j. By paying due attention to f-orbital symmetry, the hopping amplitudes between f-electron states are expressed using Slater's integrals. The Coulomb interaction terms among the μ\mu-states are written by Slater-Condon or Racah parameters. Finally, the CEF terms are obtained from the table of Hutchings. The constructed Hamiltonian is regarded as an orbital degenerate Hubbard model, since it includes two pseudo-spin and three pseudo-orbital degrees of freedom. For practical purposes, it is further simplified into a couple of two-orbital models by discarding one of the three orbitals. One of those simplified models is here analyzed using the exact diagonalization method to clarify ground-state properties by evaluating several kinds of correlation functions. Especially, the superconducting pair correlation function in orbital degenerate systems is carefully calculated based on the concept of off-diagonal long-range order. We attempt to discuss a possible relation of the present results with experimental observations for recently discovered heavy fermion superconductors CeMIn5_5 (M=Ir, Co, and Rh), and a comprehensive scenario to understand superconducting and antiferromagnetic tendencies in the so-called ``115'' materials such as CeMIn5_5, UMGa5_5, and PuCoGa5_5 from the microscopic viewpoint.Comment: 16 pages, Revtex, with 6 figures embedded in the text. Submitted to Phys. Rev.
    corecore