401 research outputs found

    Magnetic ordering and fluctuation in kagome lattice antiferromagnets, Fe and Cr jarosites

    Full text link
    Jarosite family compounds, KFe_3(OH)_6(SO_4)_2, (abbreviate Fe jarosite), and KCr_3(OH)_6(SO_4)_2, (Cr jarosite), are typical examples of the Heisenberg antiferromagnet on the kagome lattice and have been investigated by means of magnetization and NMR experiments. The susceptibility of Cr jarosite deviates from Curie-Weiss law due to the short-range spin correlation below about 150 K and shows the magnetic transition at 4.2 K, while Fe jarosite has the transition at 65 K. The susceptibility data fit well with the calculated one on the high temperature expansion for the Heisenberg antiferromagnet on the kagome lattice. The values of exchange interaction of Cr jarosite and Fe jarosite are derived to be J_Cr = 4.9 K and J_Fe = 23 K, respectively. The 1H-NMR spectra of Fe jarosite suggest that the ordered spin structure is the q = 0 type with positive chirality of the 120 degrees configuration. The transition is caused by a weak single-ion type anisotropy. The spin-lattice relaxation rate, 1/T_1, of Fe jarosite in the ordered phase decreases sharply with lowering the temperature and can be well explained by the two-magnon process of spin wave with the anisotropy.Comment: REVTeX, 14 pages with 5 figures. Submitted to Canadian Journal of Physic

    Seismic response analysis and damage verification of notojima bridge during noto peninsula earthquake

    Get PDF
    Noto Peninsula earthquake of magnitude 6.7 occurred near Noto Peninsula in Japan on March 25 2007. Notojima Bridge across Nanao Bay which was completed in 1982 is located about 30 km east-southeast of the epicenter. It is 1050 m long multi-span bridge consisting of 21 spans in which the 10 and 8 spans are simply supported PC girder bridges and the central three spans are a rigid frame PC bridge with pin-connection at the mid-span. Notojima Bridge sustained considerable damage in many RC piers bearing supports and expansion joints. Especially the piers of P10 and P13 in the central portion of the bridge sustained damage asymmetrically in spite of the symmetrical figure of the superstructure and piers. In order to verify unexpected damage the central portion is investigated based on seismic response analysis taking account of the inelastic hysteretic property of piers and the strong-motion data observed near the bridge. It is found that the difference of steel pipe piles between P10 and P13 might affect the asymmetrical damage

    On the Propagation of Slip Fronts at Frictional Interfaces

    Get PDF
    The dynamic initiation of sliding at planar interfaces between deformable and rigid solids is studied with particular focus on the speed of the slip front. Recent experimental results showed a close relation between this speed and the local ratio of shear to normal stress measured before slip occurs (static stress ratio). Using a two-dimensional finite element model, we demonstrate, however, that fronts propagating in different directions do not have the same dynamics under similar stress conditions. A lack of correlation is also observed between accelerating and decelerating slip fronts. These effects cannot be entirely associated with static local stresses but call for a dynamic description. Considering a dynamic stress ratio (measured in front of the slip tip) instead of a static one reduces the above-mentioned inconsistencies. However, the effects of the direction and acceleration are still present. To overcome this we propose an energetic criterion that uniquely associates, independently on the direction of propagation and its acceleration, the slip front velocity with the relative rise of the energy density at the slip tip.Comment: 15 pages, 6 figure

    Histogram Monte Carlo study of multicritical behavior in the hexagonal easy-axis Heisenberg antiferromagnet

    Full text link
    The results of a detailed histogram Monte-Carlo study of critical-fluctuation effects on the magnetic-field temperature phase diagram associated with the hexagonal Heisenberg antiferromagnet with weak axial anisotropy are reported. The multiphase point where three lines of continuous transitions merge at the spin-flop boundary exhibits a structure consistent with scaling theory but without the usual umbilicus as found in the case of a bicritical point.Comment: 7 pages (RevTex 3.0), 1 figure available upon request, CRPS-93-1

    Associations Between Methylation of Paternally Expressed Gene 3 (PEG3), Cervical Intraepithelial Neoplasia and Invasive Cervical Cancer.

    Get PDF
    Cytology-based screening for invasive cervical cancer (ICC) lacks sensitivity and specificity to discriminate between cervical intraepithelial neoplasia (CIN) likely to persist or progress from cases likely to resolve. Genome-wide approaches have been used to identify DNA methylation marks associated with CIN persistence or progression. However, associations between DNA methylation marks and CIN or ICC remain weak and inconsistent. Between 2008-2009, we conducted a hospital-based, case-control study among 213 Tanzania women with CIN 1/2/3 or ICC. We collected questionnaire data, biopsies, peripheral blood, cervical scrapes, Human papillomavirus (HPV) and HIV-1 infection status. We assessed PEG3 methylation status by bisulfite pyrosequencing. Multinomial logistic regression was used to estimate odds ratios (OR) and confidence intervals (CI 95%) for associations between PEG3 methylation status and CIN or ICC. After adjusting for age, gravidity, hormonal contraceptive use and HPV infection, a 5% increase in PEG3 DNA methylation was associated with increased risk for ICC (OR = 1.6; 95% CI 1.2-2.1). HPV infection was associated with a higher risk of CIN1-3 (OR = 15.7; 95% CI 5.7-48.6) and ICC (OR = 29.5, 95% CI 6.3-38.4). Infection with high risk HPV was correlated with mean PEG3 differentially methylated regions (DMRs) methylation (r = 0.34 p<0.0001), while the correlation with low risk HPV infection was weaker (r = 0.16 p = 0.047). Although small sample size limits inference, these data support that PEG3 methylation status has potential as a molecular target for inclusion in CIN screening to improve prediction of progression. Impact statement: We present the first evidence that aberrant methylation of the PEG3 DMR is an important co-factor in the development of Invasive cervical carcinoma (ICC), especially among women infected with high risk HPV. Our results show that a five percent increase in DNA methylation of PEG3 is associated with a 1.6-fold increase ICC risk. Suggesting PEG3 methylation status may be useful as a molecular marker for CIN screening to improve prediction of cases likely to progress

    Emergence of magnetic long-range order in frustrated pyrochlore Nd2_2Ir2_2O7_7 with metal-insulator transition

    Full text link
    In this study, we performed powder neutron diffraction and inelastic scattering measurements of frustrated pyrochlore Nd2_2Ir2_2O7_7, which exhibits a metal-insulator transition at a temperature TMIT_{\rm MI} of 33 K. The diffraction measurements revealed that the pyrochlore has an antiferromagnetic long-range structure with propagation vector q0\vec{q}_{0} of (0,0,0) and that it grows with decreasing temperature below 15 K. This structure was analyzed to be of the all-in all-out type, consisting of highly anisotropic Nd3+^{3+} magnetic moments of magnitude 2.3±0.42.3\pm0.4μB\mu_{\rm B}, where μB\mu_{\rm B} is the Bohr magneton. The inelastic scattering measurements revealed that the Kramers ground doublet of Nd3+^{3+} splits below TMIT_{\rm MI}. This suggests the appearance of a static internal magnetic field at the Nd sites, which probably originates from a magnetic order consisting of Ir4+^{4+} magnetic moments. Here, we discuss a magnetic structure model for the Ir order and the relation of the order to the metal-insulator transition in terms of frustration.Comment: 6 pages, 1 table, 3 figure

    HuB (elavl2) mRNA Is Restricted to the Germ Cells by Post-Transcriptional Mechanisms including Stabilisation of the Message by DAZL

    Get PDF
    The ability of germ cells to carry out a gene regulatory program distinct from the surrounding somatic tissue, and their capacity to specify an entire new organism has made them a focus of many studies that seek to understand how specific regulatory mechanisms, particularly post-transcriptional mechanisms, contribute to cell fate. In zebrafish, germ cells are specified through the inheritance of cytoplasmic determinants, termed the germ plasm, which contains a number of maternal mRNAs and proteins. Investigation of several of these messages has revealed that the restricted localisation of these mRNAs to the germ plasm and subsequent germ cells is due to cis-acting sequence elements present in their 3′UTRs. Here we show that a member of the Hu family of RNA-binding proteins, HuB, is maternally provided in the zebrafish embryo and exhibits germ cell specific expression during embryogenesis. Restriction of HuB mRNA to the germ cells is dependent on a number of sequence elements in its 3′UTR, which act to degrade the mRNA in the soma and stabilise it in the germ cells. In addition, we show that the germ cell specific RNA-binding protein DAZL is able to promote HuB mRNA stability and translation in germ cells, and further demonstrate that these activities require a 30 nucleotide element in the 3′UTR. Our study suggests that DAZL specifically binds the HuB 3′UTR and protects the message from degradation and/or enhances HuB translation, leading to the germ cell specific expression of HuB protein
    corecore