3 research outputs found

    Shuttling an Electron Spin through a Silicon Quantum Dot Array

    No full text
    Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in electrically defined quantum dots. These links create space for classical on-chip control electronics between qubit arrays, which can help to alleviate the so-called wiring bottleneck. A promising method of achieving coherent links between distant spin qubits consists of shuttling the spin through an array of quantum dots. Here, we use a linear array of four tunnel-coupled quantum dots in a 28Si/SiGe heterostructure to create a short quantum link. We move an electron spin through the quantum dot array by adjusting the electrochemical potential for each quantum dot sequentially. By pulsing the gates repeatedly, we shuttle an electron forward and backward through the array up to 250 times, which corresponds to a total distance of approximately 80μm. We make an estimate of the spin-flip probability per hop in these experiments and conclude that this is well below 0.01% per hop. Business DevelopmentBUS/TNO STAFFCommunication QuTechQCD/Vandersypen LabQCD/GeneralQCD/Scappucci LabQN/Vandersypen La

    A 2D quantum dot array in planar <sup>28</sup>Si/SiGe

    No full text
    Semiconductor spin qubits have gained increasing attention as a possible platform to host a fault-tolerant quantum computer. First demonstrations of spin qubit arrays have been shown in a wide variety of semiconductor materials. The highest performance for spin qubit logic has been realized in silicon, but scaling silicon quantum dot arrays in two dimensions has proven to be challenging. By taking advantage of high-quality heterostructures and carefully designed gate patterns, we are able to form a tunnel coupled 2 × 2 quantum dot array in a 28Si/SiGe heterostructure. We are able to load a single electron in all four quantum dots, thus reaching the (1,1,1,1) charge state. Furthermore, we characterize and control the tunnel coupling between all pairs of dots by measuring polarization lines over a wide range of barrier gate voltages. Tunnel couplings can be tuned from about 30 μ eV up to approximately 400 μ eV . These experiments provide insightful information on how to design 2D quantum dot arrays and constitute a first step toward the operation of spin qubits in 28Si/SiGe quantum dots in two dimensions.QCD/Vandersypen LabQCD/Veldhorst LabBUS/TNO STAFFQCD/Scappucci LabQN/Veldhorst LabQN/Vandersypen La

    Universal control of a six-qubit quantum processor in silicon

    No full text
    Future quantum computers capable of solving relevant problems will require a large number of qubits that can be operated reliably1. However, the requirements of having a large qubit count and operating with high fidelity are typically conflicting. Spins in semiconductor quantum dots show long-term promise2,3 but demonstrations so far use between one and four qubits and typically optimize the fidelity of either single- or two-qubit operations, or initialization and readout4-11. Here, we increase the number of qubits and simultaneously achieve respectable fidelities for universal operation, state preparation and measurement. We design, fabricate and operate a six-qubit processor with a focus on careful Hamiltonian engineering, on a high level of abstraction to program the quantum circuits, and on efficient background calibration, all of which are essential to achieve high fidelities on this extended system. State preparation combines initialization by measurement and real-time feedback with quantum-non-demolition measurements. These advances will enable testing of increasingly meaningful quantum protocols and constitute a major stepping stone towards large-scale quantum computers.QCD/Vandersypen LabBUS/TNO STAFFBUS/Quantum DelftQCD/Veldhorst LabQCD/Scappucci LabQN/Veldhorst LabQN/Vandersypen La
    corecore