4 research outputs found
A Tractable Model of the LTE Access Reservation Procedure for Machine-Type Communications
A canonical scenario in Machine-Type Communications (MTC) is the one
featuring a large number of devices, each of them with sporadic traffic. Hence,
the number of served devices in a single LTE cell is not determined by the
available aggregate rate, but rather by the limitations of the LTE access
reservation protocol. Specifically, the limited number of contention preambles
and the limited amount of uplink grants per random access response are crucial
to consider when dimensioning LTE networks for MTC. We propose a low-complexity
model of LTE's access reservation protocol that encompasses these two
limitations and allows us to evaluate the outage probability at click-speed.
The model is based chiefly on closed-form expressions, except for the part with
the feedback impact of retransmissions, which is determined by solving a fixed
point equation. Our model overcomes the incompleteness of the existing models
that are focusing solely on the preamble collisions. A comparison with the
simulated LTE access reservation procedure that follows the 3GPP
specifications, confirms that our model provides an accurate estimation of the
system outage event and the number of supported MTC devices.Comment: Submitted, Revised, to be presented in IEEE Globecom 2015; v3: fixed
error in eq. (4
What Can Wireless Cellular Technologies Do about the Upcoming Smart Metering Traffic?
The introduction of smart electricity meters with cellular radio interface
puts an additional load on the wireless cellular networks. Currently, these
meters are designed for low duty cycle billing and occasional system check,
which generates a low-rate sporadic traffic. As the number of distributed
energy resources increases, the household power will become more variable and
thus unpredictable from the viewpoint of the Distribution System Operator
(DSO). It is therefore expected, in the near future, to have an increased
number of Wide Area Measurement System (WAMS) devices with Phasor Measurement
Unit (PMU)-like capabilities in the distribution grid, thus allowing the
utilities to monitor the low voltage grid quality while providing information
required for tighter grid control. From a communication standpoint, the traffic
profile will change drastically towards higher data volumes and higher rates
per device. In this paper, we characterize the current traffic generated by
smart electricity meters and supplement it with the potential traffic
requirements brought by introducing enhanced Smart Meters, i.e., meters with
PMU-like capabilities. Our study shows how GSM/GPRS and LTE cellular system
performance behaves with the current and next generation smart meters traffic,
where it is clearly seen that the PMU data will seriously challenge these
wireless systems. We conclude by highlighting the possible solutions for
upgrading the cellular standards, in order to cope with the upcoming smart
metering traffic.Comment: Submitted; change: corrected location of eSM box in Fig. 1; May 22,
2015: Major revision after review; v4: revised, accepted for publicatio