36 research outputs found

    Tissue Inhibitor of Metalloproteinase-1 Deficiency Abrogates Obliterative Airway Disease after Heterotopic Tracheal Transplantation

    No full text
    Obliterative bronchiolitis (OB) is a major cause of allograft dysfunction after lung transplantation and is thought to result from immunologically mediated airway epithelial destruction and luminal fibrosis. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have been implicated in the regulation of lung inflammation, airway epithelial repair, and extracellular matrix remodeling and therefore may participate in the pathogenesis of OB. The goals of this study were to determine the expression profiles of MMPs and TIMPs and the role of TIMP-1 in the development of airway obliteration using the murine heterotopic tracheal transplant model of OB. We demonstrate the selective induction of MMP-3, MMP-9, MMP-12, and TIMP-1 in a temporally restricted manner in tracheal allografts compared with isografts. In contrast, the expression of MMP-7, TIMP-2, and TIMP-3 was decreased in allografts relative to isografts during the period of graft rejection. TIMP-1 protein localized to epithelial, mesenchymal, and inflammatory cells in the tracheal grafts in a temporally and spatially restricted manner. Using TIMP-1–deficient mice, we demonstrate that the absence of TIMP-1 in the donor trachea or the allograft recipient reduced luminal obliteration and increased re-epithelialization in the allograft compared with wild-type control at 28 d after transplantation. Our findings provide direct evidence that TIMP-1 contributes to the development of airway fibrosis in the heterotopic tracheal transplant model, and suggest a potential role for this proteinase inhibitor in the pathogenesis of OB in patients with lung transplant

    Pretransplant Lung Function, Respiratory Failure, and Mortality after Stem Cell Transplantation

    No full text
    Rationale: The role of pulmonary function before stem cell transplant as a potential risk factor for the development of early post-transplant respiratory failure and mortality is controversial. Methods: We conducted a retrospective analysis of the pretransplant pulmonary function of 2,852 patients who received their transplant between 1990 and 2001. Measurements: Pretransplant FEV1, FVC, total lung capacity (TLC), diffusing capacity of carbon monoxide (DLCO), and the alveolar–arterial oxygen tension difference P(A-a)O2 were measured and assessed for association with development of early respiratory failure and mortality in Cox proportional hazard logistic models. Main Results: In multivariate analyses, progressive decrease of all lung function parameters was associated with a stepwise increase in risk of developing early respiratory failure and mortality when assessed in independent models. On the basis of a significant correlation between FEV1 and FVC (r = 0.81), FEV1 and TLC (r = 0.61), and FVC and TLC (r = 0.80), and a lack of correlation between FEV1 and DLCO, we developed a pretransplant lung function score based on pretransplant FEV1 and DLCO to determine the extent of pulmonary compromise before transplant. Multivariate analysis indicated that higher pretransplant lung function scores are associated with a significant increased risk for developing early respiratory failure (category II hazard ratio [HR], 1.4; category III HR, 2.2; category IV HR, 3.1; p < 0.001) and death (category II HR, 1.2; category III HR, 2.2; category IV HR, 2.7; p < 0.005). Conclusions: These results suggest that not only does compromised pretransplant lung function contribute to the risk for development of early respiratory failure and mortality but this risk may be estimated before transplant by grading the extent of FEV1 and DLCO compromise
    corecore