8,367 research outputs found
Very Small Strangelets
We study the stability of small strangelets by employing a simple model of
strange matter as a gas of non-interacting fermions confined in a bag. We solve
the Dirac equation and populate the energy levels of the bag one quark at a
time. Our results show that for system parameters such that strange matter is
unbound in bulk, there may still exist strangelets with that are stable
and/or metastable. The lifetime of these strangelets may be too small to detect
in current accelerator experiments, however.Comment: 13 pages, MIT CTP#217
A Cosmological Three Level Neutrino Laser
We present a calculation of a neutrino decay scenario in the early Universe.
The specific decay is \nu_{2} \to \nu_{1} + \phi, where \phi is a boson. If
there is a neutrino mass hierarchy, m_{\nu_{e}} < m_{\nu_{\mu}} <
m_{\nu_{\tau}}, we show that it is possible to generate stimulated decay and
effects similar to atomic lasing without invoking new neutrinos, even starting
from identical neutrino distributions. Under the right circumstances the decay
can be to very low momentum boson states thereby producing something similar to
a Bose condensate, with possible consequences for structure formation. Finally,
we argue that this type of decay may also be important other places in early
Universe physics.Comment: 7 pages, RevTex, due for publication in Phys. Rev. D, April 15 issu
Thermodynamics, strange quark matter, and strange stars
Because of the mass density-dependence, an extra term should be added to the
expression of pressure. However, it should not appear in that of energy
according to both the general ensemble theory and basic thermodynamic
principle. We give a detail derivation of the thermodynamics with
density-dependent particle masses. With our recently determined quark mass
scaling, we study strange quark matter in this new thermodynamic treatment,
which still indicates a possible absolute stability as previously found.
However, the density behavior of the sound velocity is opposite to the previous
finding, but consistent with one of our recent publication. We have also
studied the structure of strange stars using the obtained equation of state.Comment: 6 pages, 6 PS figures, REVTeX styl
Charge and critical density of strange quark matter
The electric charge of strange quark matter is of vital importance to
experiments. A recent investigation shows that strangelets are most likely
highly negatively charged, rather than slightly positively charged as
previously believed. Our present study indicates that negative charges can
indeed lower the critical density, and thus be favorable to the experimental
searches in heavy ion collisions. However, too much negative charges can make
it impossible to maintain flavor equilibrium.Comment: 4 pages, LATeX with REVTeX style, one PS figure. To be published in
Phys. Rev. C 59(6), 199
Colour-singlet strangelets at finite temperature
Considering massless and quarks, and massive (150 MeV) quarks in
a bag with the bag pressure constant MeV, a colour-singlet
grand canonical partition function is constructed for temperatures
MeV. Then the stability of finite size strangelets is studied minimizing the
free energy as a function of the radius of the bag. The colour-singlet
restriction has several profound effects when compared to colour unprojected
case: (1) Now bulk energy per baryon is increased by about MeV making the
strange quark matter unbound. (2) The shell structures are more pronounced
(deeper). (3) Positions of the shell closure are shifted to lower -values,
the first deepest one occuring at , famous -particle ! (4) The shell
structure at vanishes only at MeV, though for higher
-values it happens so at MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from
first Autho
Mass formulas and thermodynamic treatment in the mass-density-dependent model of strange quark matter
The previous treatments for strange quark matter in the quark
mass-density-dependent model have unreasonable vacuum limits. We provide a
method to obtain the quark mass parametrizations and give a self-consistent
thermodynamic treatment which includes the MIT bag model as an extreme. In this
treatment, strange quark matter in bulk still has the possibility of absolute
stability. However, the lower density behavior of the sound velocity is
opposite to previous findings.Comment: Formatted in REVTeX 3.1, 5 pages, 3 figures, to appear in PRC6
Nucleation of quark matter bubbles in neutron stars
The thermal nucleation of quark matter bubbles inside neutron stars is
examined for various temperatures which the star may realistically encounter
during its lifetime. It is found that for a bag constant less than a critical
value, a very large part of the star will be converted into the quark phase
within a fraction of a second. Depending on the equation of state for neutron
star matter and strange quark matter, all or some of the outer parts of the
star may subsequently be converted by a slower burning or a detonation.Comment: 13 pages, REVTeX, Phys.Rev.D (in press), IFA 93-32. 5 figures (not
included) available upon request from [email protected]
Chiral phase properties of finite size quark droplets in the Nambu--Jona-Lasinio model
Chiral phase properties of finite size hadronic systems are investigated
within the Nambu--Jona-Lasinio model. Finite size effects are taken into
account by making use of the multiple reflection expansion. We find that, for
droplets with relatively small baryon numbers, chiral symmetry restoration is
enhanced by the finite size effects. However the radius of the stable droplet
does not change much, as compared to that without the multiple reflection
expansion.Comment: RevTex4, 9 pages, 6 figures, to be published in Phys. Rev.
Semiclassical two-step model for strong-field ionization
We present a semiclassical two-step model for strong-field ionization that
accounts for path interferences of tunnel-ionized electrons in the ionic
potential beyond perturbation theory. Within the framework of a classical
trajectory Monte-Carlo representation of the phase-space dynamics, the model
employs the semiclassical approximation to the phase of the full quantum
propagator in the exit channel. By comparison with the exact numerical solution
of the time-dependent Schr\"odinger equation for strong-field ionization of
hydrogen, we show that for suitable choices of the momentum distribution after
the first tunneling step, the model yields good quantitative agreement with the
full quantum simulation. The two-dimensional photoelectron momentum
distributions, the energy spectra, and the angular distributions are found to
be in good agreement with the corresponding quantum results. Specifically, the
model quantitatively reproduces the fan-like interference patterns in the
low-energy part of the two-dimensional momentum distributions as well as the
modulations in the photoelectron angular distributions.Comment: 31 pages, 7 figure
Does the quark-gluon plasma contain stable hadronic bubbles?
We calculate the thermodynamic potential of bubbles of hadrons embedded in
quark-gluon plasma, and of droplets of quark-gluon plasma embedded in hadron
phase. This is a generalization of our previous results to the case of non-zero
chemical potentials. As in the zero chemical potential case, we find that a
quark-gluon plasma in thermodynamic equilibrium may contain stable bubbles of
hadrons of radius fm. The calculations are performed within the
MIT Bag model, using an improved multiple reflection expansion. The results are
of relevance for neutron star phenomenology and for ultrarelativistic heavy ion
collisions.Comment: 12 pages including 8 figures. To appear in Phys. Rev.
- âŠ