8,873 research outputs found
Vegetative Spread of Dioecious Hydrilla Colonies in Experimental Ponds
Stolon formation and fragmentation are two vegetative mechanisms by which hydrilla colonies expand. These two mechanisms of spread were studied in ponds located in Lewisville, TX over a two-year period. Stolons were determined to be the predominant mechanism for localized expansion in undisturbed areas. While some fragments were produced, they accounted for only 0.1% of the establishment of rooted plants in new quadrats. Peak production of fragments occurred in October and November, with fragment densities of 0.15 N m-2 d-1. Expansion by stolons occurred between June and November of each year, with higher rates of spread (up to 4.0 cm d-1 radial growth) observed in the second season
Compact Toroidal Ion Trap Design and Optimization
We present the design of a new type of compact toroidal, or "halo", ion trap.
Such traps may be useful for mass spectrometry, studying small Coulomb cluster
rings, quantum information applications, or other quantum simulations where a
ring topology is of interest. We present results from a Monte Carlo
optimization of the trap design parameters using finite-element analysis
simulations that minimizes higher-order anharmonic terms in the trapping
pseudopotential, while maintaining complete control over ion placement at the
pseudopotential node in 3D using static bias fields. These simulations are
based on a practical electrode design using readily-available parts, yet can be
easily scaled to any size trap with similar electrode spacings. We also derive
the conditions for a crystal phase transition for two ions in the compact halo
trap, the first non-trivial phase transition for Coulomb crystals in this
geometry.Comment: 8 pages, 9 figure
A review of applied methods in Europe for flood-frequency analysis in a changing environment
The report presents a review of methods used in Europe for trend analysis, climate change projections and non-stationary analysis of extreme precipitation and flood frequency. In addition, main findings of the analyses are presented, including a comparison of trend analysis results and climate change projections. Existing guidelines in Europe on design flood and design rainfall estimation that incorporate climate change are reviewed. The report
concludes with a discussion of research needs on non-stationary frequency analysis for considering the effects of climate change and inclusion in design guidelines.
Trend analyses are reported for 21 countries in Europe with results for extreme precipitation, extreme streamflow or both. A large number of national and regional trend studies have been carried out. Most studies are based on statistical methods applied to individual time series of extreme precipitation or extreme streamflow using the non-parametric Mann-Kendall trend test or regression analysis. Some studies have been reported that use field significance or regional consistency tests to analyse trends over larger areas. Some of the studies also include analysis of trend attribution. The studies reviewed indicate that there is
some evidence of a general increase in extreme precipitation, whereas there are no clear indications of significant increasing trends at regional or national level of extreme streamflow. For some smaller regions increases in extreme streamflow are reported. Several studies from regions dominated by snowmelt-induced peak flows report decreases in extreme streamflow and earlier spring snowmelt peak flows. Climate change projections have been reported for 14 countries in Europe with results for extreme precipitation, extreme streamflow or both. The review shows various approaches for producing climate projections of extreme precipitation and flood frequency based on
alternative climate forcing scenarios, climate projections from available global and regional climate models, methods for statistical downscaling and bias correction, and alternative hydrological models. A large number of the reported studies are based on an ensemble modelling approach that use several climate forcing scenarios and climate model projections in order to address the uncertainty on the projections of extreme precipitation and flood frequency. Some studies also include alternative statistical downscaling and bias correction methods and hydrological modelling approaches. Most studies reviewed indicate an increase in extreme precipitation under a future climate, which is consistent with the observed trend of extreme precipitation. Hydrological projections of peak flows and flood frequency show both positive and negative changes. Large increases in peak flows are reported for some catchments with rainfall-dominated peak flows, whereas a general decrease in flood magnitude and earlier spring floods are reported for catchments with snowmelt-dominated peak flows. The latter is consistent with the observed trends. The review of existing guidelines in Europe on design floods and design rainfalls shows that only few countries explicitly address climate change. These design guidelines are based on climate change adjustment factors to be applied to current design estimates and may
depend on design return period and projection horizon. The review indicates a gap between the need for considering climate change impacts in design and actual published guidelines that incorporate climate change in extreme precipitation and flood frequency. Most of the studies reported are based on frequency analysis assuming stationary conditions in a certain time window (typically 30 years) representing current and future climate. There is a need for developing more consistent non-stationary frequency analysis methods that can account for the transient nature of a changing climate
Panel Discussion - Management of Eurasian watermilfoil in the United States using native insects: State regulatory and management issues
While researchers have evaluated the potential of native
insect herbivores to manage nonindigenous aquatic plant
species such as Eurasian watermilfoil (
Myriophyllum spicatum
L.), the practical matters of regulatory compliance and implementation
have been neglected. A panel of aquatic nuisance
species program managers from three state natural
resource management agencies (Minnesota, Vermont and
Washington) discussed their regulatory and policy concerns.
In addition, one ecological consultant attempting to market
one of the native insects to manage Eurasian watermilfoil
added his perspective on the special challenges of distributing
a native biological control agent for management of Eurasian
watermilfoil
Heat Transfer From An Oscillating Horizontal Wire
The effect of vibration on heat transfer by natural convection has been investigated experimentally using a thin wire, 0.010 in. in diameter, and air as a convection medium. Horizontal reciprocating motion of varying amplitudes, peak-to-peak values of 0-2.655 in., and frequencies, 0-20 cps, was applied to an electrically heated horizontal wire. The average wire velocity (frequency times total path length traveled per cycle by the wire) was used to correlate and predict the experimental results. © 1971 by ASME
Electronic structure of the ferromagnetic superconductor UCoGe from first principles
The superconductor UCoGe is analyzed with electronic structure calculations
using Linearized Augmented Plane Wave method based on Density Functional
Theory. Ferromagnetic and antiferromagnetic calculations with and without
correlations (via LDA+U) were done. In this compound the Fermi level is
situated in a region where the main contribution to DOS comes from the U-5f
orbital. The magnetic moment is mainly due to the Co-3d orbital with a small
contribution from the U-5f orbital. The possibility of fully non-collinear
magnetism in this compound seems to be ruled out. These results are compared
with the isostructural compound URhGe, in this case the magnetism comes mostly
from the U-5f orbital
C and S induces changes in the electronic and geometric structure of Pd(533) and Pd(320)
We have performed ab initio electronic structure calculations of C and S
adsorption on two vicinal surfaces of Pd with different terrace geometry and
width. We find both adsorbates to induce a significant perturbation of the
surface electronic and geometric structure of Pd(533) and Pd(320). In
particular C adsorbed at the bridge site at the edge of a Pd chain in Pd(320)
is found to penetrate the surface to form a sub-surface structure. The
adsorption energies show almost linear dependence on the number of
adsorbate-metal bonds, and lie in the ranges of 5.31eV to 8.58eV for C and
2.89eV to 5.40eV for S. A strong hybridization between adsorbate and surface
electronic states causes a large splitting of the bands leading to a drastic
decrease in the local densities of electronic states at the Fermi-level for Pd
surface atoms neighboring the adsorbate which may poison catalytic activity of
the surface. Comparison of the results for Pd(533) with those obtained earlier
for Pd(211) suggests the local character of the impact of the adsorbate on the
geometric and electronic structures of Pd surfaces.Comment: 14 pages 9 figs, Accepted J. Phys: Conden
Strong-field approximation for Coulomb explosion of H_2^+ by short intense laser pulses
We present a simple quantum mechanical model to describe Coulomb explosion of
H by short, intense, infrared laser pulses. The model is based on the
length gauge version of the molecular strong-field approximation and is valid
for pulses shorter than 50 fs where the process of dissociation prior to
ionization is negligible. The results are compared with recent experimental
results for the proton energy spectrum [I. Ben-Itzhak et al., Phys. Rev. Lett.
95, 073002 (2005), B. D. Esry et al., Phys. Rev. Lett. 97, 013003 (2006)]. The
predictions of the model reproduce the profile of the spectrum although the
peak energy is slightly lower than the observations. For comparison, we also
present results obtained by two different tunneling models for this process.Comment: 8 pages, 4 figure
Compact Einstein-Weyl four-dimensional manifolds
We look for four dimensional Einstein-Weyl spaces equipped with a regular
Bianchi metric. Using the explicit 4-parameters expression of the distance
obtained in a previous work for non-conformally-Einstein Einstein-Weyl
structures, we show that only four 1-parameter families of regular metrics
exist on orientable manifolds : they are all of Bianchi type and
conformally K\"ahler ; moreover, in agreement with general results, they have a
positive definite conformal scalar curvature. In a Gauduchon's gauge, they are
compact and we obtain their topological invariants. Finally, we compare our
results to the general analyses of Madsen, Pedersen, Poon and Swann : our
simpler parametrisation allows us to correct some of their assertions.Comment: Latex file, 13 pages, an important reference added and a critical
discussion of its claims offered, others minor modification
How to identify a Strange Star
Contrary to young neutron stars, young strange stars are not subject to the
r-mode instability which slows rapidly rotating, hot neutron stars to rotation
periods near 10 ms via gravitational wave emission. Young millisecond pulsars
are therefore likely to be strange stars rather than neutron stars, or at least
to contain significant quantities of quark matter in the interior.Comment: 4 pages, 1 figur
- …