8,509 research outputs found

    High-order harmonic generation from polyatomic molecules including nuclear motion and a nuclear modes analysis

    Full text link
    We present a generic approach for treating the effect of nuclear motion in the high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH4_4 and CD4_4 and thereby provide direct theoretical support for a recent experiment [Baker {\it et al.}, Science {\bf 312}, 424 (2006)] that uses high-order harmonic generation to probe the ultra-fast structural nuclear rearrangement of ionized methane.Comment: 6 pages, 6 figure

    Zero-Point cooling and low heating of trapped 111Cd+ ions

    Full text link
    We report on ground state laser cooling of single 111Cd+ ions confined in radio-frequency (Paul) traps. Heating rates of trapped ion motion are measured for two different trapping geometries and electrode materials, where no effort was made to shield the electrodes from the atomic Cd source. The low measured heating rates suggest that trapped 111Cd+ ions may be well-suited for experiments involving quantum control of atomic motion, including applications in quantum information science.Comment: 4 pages, 6 figures, Submitted to PR

    Manipulating the torsion of molecules by strong laser pulses

    Full text link
    A proof-of-principle experiment is reported, where torsional motion of a molecule, consisting of a pair of phenyl rings, is induced by strong laser pulses. A nanosecond laser pulse spatially aligns the carbon-carbon bond axis, connecting the two phenyl rings, allowing a perpendicularly polarized, intense femtosecond pulse to initiate torsional motion accompanied by an overall rotation about the fixed axis. The induced motion is monitored by femtosecond time-resolved Coulomb explosion imaging. Our theoretical analysis accounts for and generalizes the experimental findings.Comment: 4 pages, 4 figures, submitted to PRL; Major revision of the presentation of the material; Correction of ion labels in Fig. 2(a

    Strong Orientation Effects in Ionization of H2+_2^+ by Short, Intense, High-Frequency Light Sources

    Full text link
    We present three dimensional time-dependent calculations of ionization of arbitrarily spatially oriented H2+_2^+ by attosecond, intense, high-frequency laser fields. The ionization probability shows a strong dependence on both the internuclear distance and the relative orientation between the laser field and the internuclear axis.Comment: 4 pages, 4 figure

    Electronic structure of the ferromagnetic superconductor UCoGe from first principles

    Full text link
    The superconductor UCoGe is analyzed with electronic structure calculations using Linearized Augmented Plane Wave method based on Density Functional Theory. Ferromagnetic and antiferromagnetic calculations with and without correlations (via LDA+U) were done. In this compound the Fermi level is situated in a region where the main contribution to DOS comes from the U-5f orbital. The magnetic moment is mainly due to the Co-3d orbital with a small contribution from the U-5f orbital. The possibility of fully non-collinear magnetism in this compound seems to be ruled out. These results are compared with the isostructural compound URhGe, in this case the magnetism comes mostly from the U-5f orbital

    Production of Strange Clusters and Strange Matter in Nucleus-Nucleus Collisions at the AGS

    Get PDF
    Production probabilities for strange clusters and strange matter in Au+Au collisions at AGS energy are obtained in the thermal fireball model. The only parameters of the model, the baryon chemical potential and temperature, were determined from a description of the rather complete set of hadron yields from Si+nucleus collisions at the AGS. For the production of light nuclear fragments and strange clusters the results are similar to recent coalescence model calculations. Strange matter production with baryon number larger than 10 is predicted to be much smaller than any current experimental sensitivities.Comment: 9 Pages (no figures

    Differential atom interferometry beyond the standard quantum limit

    Full text link
    We analyze methods to go beyond the standard quantum limit for a class of atomic interferometers, where the quantity of interest is the difference of phase shifts obtained by two independent atomic ensembles. An example is given by an atomic Sagnac interferometer, where for two ensembles propagating in opposite directions in the interferometer this phase difference encodes the angular velocity of the experimental setup. We discuss methods of squeezing separately or jointly observables of the two atomic ensembles, and compare in detail advantages and drawbacks of such schemes. In particular we show that the method of joint squeezing may improve the variance by up to a factor of 2. We take into account fluctuations of the number of atoms in both the preparation and the measurement stage, and obtain bounds on the difference of the numbers of atoms in the two ensembles, as well as on the detection efficiency, which have to be fulfilled in order to surpass the standard quantum limit. Under realistic conditions, the performance of both schemes can be improved significantly by reading out the phase difference via a quantum non-demolition (QND) measurement. Finally, we discuss a scheme using macroscopically entangled ensembles.Comment: 10 pages, 5 figures; eq. (3) corrected and other minor change
    • …
    corecore