9,984 research outputs found

    High-harmonic generation from arbitrarily oriented diatomic molecules including nuclear motion and field-free alignment

    Get PDF
    We present a theoretical model of high-harmonic generation from diatomic molecules. The theory includes effects of alignment as well as nuclear motion and is used to predict results for N2_2, O2_2, H2_2 and D2_2. The results show that the alignment dependence of high-harmonics is governed by the symmetry of the highest occupied molecular orbital and that the inclusion of the nuclear motion in the theoretical description generally reduces the intensity of the harmonic radiation. We compare our model with experimental results on N2_2 and O2_2, and obtain very good agreement.Comment: 12 pages, 8 figures, 2 tables; legends revised on Figs. 1,3,4,6 and

    High-order harmonic generation from polyatomic molecules including nuclear motion and a nuclear modes analysis

    Full text link
    We present a generic approach for treating the effect of nuclear motion in the high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH4_4 and CD4_4 and thereby provide direct theoretical support for a recent experiment [Baker {\it et al.}, Science {\bf 312}, 424 (2006)] that uses high-order harmonic generation to probe the ultra-fast structural nuclear rearrangement of ionized methane.Comment: 6 pages, 6 figure

    Experimental Bell Inequality Violation with an Atom and a Photon

    Full text link
    We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement characterization of this hybrid system may also be useful in quantum information applications.Comment: 4 pages, 2 figure

    Manipulating the torsion of molecules by strong laser pulses

    Full text link
    A proof-of-principle experiment is reported, where torsional motion of a molecule, consisting of a pair of phenyl rings, is induced by strong laser pulses. A nanosecond laser pulse spatially aligns the carbon-carbon bond axis, connecting the two phenyl rings, allowing a perpendicularly polarized, intense femtosecond pulse to initiate torsional motion accompanied by an overall rotation about the fixed axis. The induced motion is monitored by femtosecond time-resolved Coulomb explosion imaging. Our theoretical analysis accounts for and generalizes the experimental findings.Comment: 4 pages, 4 figures, submitted to PRL; Major revision of the presentation of the material; Correction of ion labels in Fig. 2(a
    corecore