373 research outputs found

    Spin squeezing and precision probing with light and samples of atoms in the gaussian approximation

    Full text link
    We consider an ensemble of trapped atoms interacting with a continuous wave laser field. For sufficiently polarized atoms and for a polarized light field, we may approximate the non-classical components of the collective spin angular momentum operator for the atoms and the Stokes vectors of the field by effective position and momentum variables for which we assume a gaussian state. Within this approximation, we present a theory for the squeezing of the atomic spin by polarization rotation measurements on the probe light. We derive analytical expressions for the squeezing with and without inclusion of the noise effects introduced by atomic decay and by photon absorption. The theory is readily adapted to the case of inhomogeneous light-atom coupling [A. Kuzmich and T.A.B. Kennedy, Phys. Rev. Lett. Vol. 92, 030407 (2004)]. As a special case, we show how to formulate the theory for an optically thick sample by slicing the gas into pieces each having only small photon absorption probability. Our analysis of a realistic probing and measurement scheme shows that it is the maximally squeezed component of the atomic gas that determines the accuracy of the measurement.Comment: 12 pages, 5 figure

    Coherent control and feedback cooling in a remotely-coupled hybrid atom-optomechanical system

    Full text link
    Cooling to the motional ground state is an important first step in the preparation of nonclassical states of mesoscopic mechanical oscillators. Light-mediated coupling to a remote atomic ensemble has been proposed as a method to reach the ground state for low frequency oscillators. The ground state can also be reached using optical measurement followed by feedback control. Here we investigate the possibility of enhanced cooling by combining these two approaches. The combination, in general, outperforms either individual technique, though atomic ensemble-based cooling and feedback cooling each individually dominate over large regions of parameter space.Comment: 28 pages, 5 figures, 2 tables. Updated to include exemplary experimental parameters and expanded discussion of noise source

    Complete elimination of information leakage in continuous-variable quantum communication channels

    Get PDF
    In all lossy communication channels realized to date, information is inevitably leaked to a potential eavesdropper. Here we present a communication protocol that does not allow for any information leakage to a potential eavesdropper in a purely lossy channel. By encoding information into a restricted Gaussian alphabet of squeezed states we show, both theoretically and experimentally, that the Holevo information between the eavesdropper and the intended recipient can be exactly zero in a purely lossy channel while minimized in a noisy channel. This result is of fundamental interest, but might also have practical implications in extending the distance of secure quantum key distribution.Comment: 9 pages, 5 figure

    Magnetometry with entangled atomic samples

    Full text link
    We present a theory for the estimation of a scalar or a vector magnetic field by its influence on an ensemble of trapped spin polarized atoms. The atoms interact off-resonantly with a continuous laser field, and the measurement of the polarization rotation of the probe light, induced by the dispersive atom-light coupling, leads to spin-squeezing of the atomic sample which enables an estimate of the magnetic field which is more precise than that expected from standard counting statistics. For polarized light and polarized atoms, a description of the non-classical components of the collective spin angular momentum for the atoms and the collective Stokes vectors of the light-field in terms of effective gaussian position and momentum variables is practically exact. The gaussian formalism describes the dynamics of the system very effectively and accounts explicitly for the back-action on the atoms due to measurement and for the estimate of the magnetic field. Multi-component magnetic fields are estimated by the measurement of suitably chosen atomic observables and precision and efficiency is gained by dividing the atomic gas in two or more samples which are entangled by the dispersive atom-light interaction.Comment: 8 pages, 11 figure

    Geometric phases in open tripod systems

    Full text link
    We first consider stimulated Raman adibatic passages (STIRAP) in a closed four-level tripod system. In this case, the adiabatic eigenstates of the system acquire real geometric phases. When the system is open and subject to decoherence they acquire complex geometric phases that we determine by a Monte Carlo wave function approach. We calculate the geometric phases and the state evolution in the closed as well as in the open system cases and describe the deviation between these in terms of the phases acquired. When the system is closed, the adiabatic evolution implements a Hadamard gate. The open system implements an imperfect gate and hence has a fidelity below unity. We express this fidelity in terms of the acquired geometric phases.Comment: 10 pages 7 figure

    Experimental Investigation of the Evolution of Gaussian Quantum Discord in an Open System

    Get PDF
    Gaussian quantum discord is a measure of quantum correlations in Gaussian systems. Using Gaussian discord we quantify the quantum correlations of a bipartite entangled state and a separable two-mode mixture of coherent states. We experimentally analyze the effect of noise addition and dissipation on Gaussian discord and show that the former noise degrades the discord while the latter noise for some states leads to an increase of the discord. In particular, we experimentally demonstrate the near-death of discord by noisy evolution and its revival through dissipation.Comment: 5 pages, 5 figure

    Fracture Energy of Plain Concrete Beams at Different Rates of Loading

    Get PDF
    • …
    corecore