6 research outputs found

    The anionic biosurfactant rhamnolipid does not denature industrial enzymes

    Get PDF
    Biosurfactants (BS) are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL) and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS) on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ), the phospholipase Lecitase Ultra® (LT) and the α-amylase Stainzyme® (SZ). Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction towards the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the protein well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries) to SZ. Furthermore all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant proteins. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications

    The T790M resistance mutation in EGFR is only found in cfDNA from erlotinib-treated NSCLC patients that harbored an activating EGFR mutation before treatment

    No full text
    Abstract Background Lung cancer patients with an activating mutation in the EGFR (epidermal growth factor receptor) can develop resistance to erlotinib treatment, which is often mediated by the T790M resistance mutation in EGFR. The difficulties in obtaining biopsies at progression make it challenging to investigate the appearance of the T790M mutation at progression in large patient cohorts. We have used cell free DNA (cfDNA) from patients treated with erlotinib to investigate if the development of a T790M mutation coincides with the presence of an activating EGFR mutation in the pre-treatment blood sample. Methods A cohort of 227 NSCLC (non-small cell lung cancer) adenocarcinoma patients was treated with erlotinib irrespective of EGFR-mutational status. Blood samples were drawn immediately before erlotinib treatment was initiated and again at progression. The cobas® EGFR Mutation Test v2 designed for cfDNA was used to identify 42 EGFR mutations. Results Of the 227 NSCLC patients, blood samples were available from 144 patients both before erlotinib treatment and at progression (within 1 month before or after clinical progression). One hundred and twenty-eight of the 144 were wild-type EGFR before treatment, and we demonstrate that the T790M mutation was not present at progression in any of these. In contrast, in the 16 patients with an activating EGFR mutation in the pre-treatment blood sample six patients (38%) were identified with a T790M mutation in the progression blood sample. Conclusion The T790M resistance mutation is only found in the cfDNA of erlotinib-treated NSCLC patients if they have an activating EGFR mutation before treatment
    corecore