1,127 research outputs found

    The Feinheit method: A phase-independent formulation of the period-luminosity relation for Cephids

    Get PDF
    The tight correlation between color and luminosity during the cyclical variation of a Cepheid is calibrated and shown to be a direct means by which most of the phase-dependent temperature-induced amplitude of the variable can be transformed away. The resulting Feinheit function, F = V - alpha (B-V) gives rise to a random-phase period-luminosity relation with an rms scatter of less than 0.20 mag. A comparison shows that the blue Feinheit method for distance determinations method from single-phase observations is as accurate as near-infrared photometry but has the added advantage of being able to use panoramic detectors for the data acquisition. The Feinheit function is identified as the surface area variation of the Cepheid during its cycle

    Palomar/Las Campanas Imaging Atlas of Blue Compact Dwarf Galaxies: II. Surface Photometry and the Properties of the Underlying Stellar Population

    Get PDF
    We present the results from an analysis of surface photometry of B, R, and Halpha images of a total of 114 nearby galaxies drawn from the Palomar/Las Campanas Imaging Atlas of Blue Compact Dwarf galaxies. Surface brightness and color profiles for the complete sample have been obtained. We determine the exponential and Sersic profiles that best fit the surface brightness distribution of the underlying stellar population detected in these galaxies. We also compute the (B-R) color and total absolute magnitude of the underlying stellar population and compared them to the integrated properties of the galaxies in the sample. Our analysis shows that the (B-R) color of the underlying population is systematically redder than the integrated color, except in those galaxies where the integrated colors are strongly contaminated by line and nebular-continuum emission. We also find that galaxies with relatively red underlying stellar populations (typically (B-R)>~1mag) show structural properties compatible with those of dwarf elliptical galaxies (i.e. a smooth light distribution, fainter extrapolated central surface brightness and larger scale lengths than BCD galaxies with blue underlying stellar populations). At least ~15% of the galaxies in the sample are compatible with being dwarf elliptical (dE) galaxies experiencing a burst of star formation. For the remaining BCD galaxies in the sample we do not find any correlation between the recent star formation activity and their structural differences with respect to other types of dwarf galaxies.Comment: 35 pages, 6 figures, accepted for publication in ApJS. Postscript files of panels f1a-f1o of figure 1 are available online at http://www.ociw.edu/~agpaz/astro-ph/apjs2004

    High Resolution Rotation Curves of Low Surface Brightness Galaxies

    Get PDF
    High resolution Halpha rotation curves are presented for five low surface brightness galaxies. These Halpha rotation curves have shapes different from those previously derived from HI observations, probably because of the higher spatial resolution of the Halpha observations. The Halpha rotation curves rise more steeply in the inner parts than the HI rotation curves and reach a flat part beyond about two disk scale lengths. With radii expressed in optical disk scale lengths, the rotation curves of the low surface brightness galaxies presented here and those of HSB galaxies have almost identical shapes. Mass modeling shows that the contribution of the stellar component to the rotation curves may be scaled to explain most of the inner parts of the rotation curves, albeit with high stellar mass-to-light ratios. On the other hand, well fitting mass models can also be obtained with lower contributions of the stellar disk. These observations suggest that the luminous mass density and the total mass density are coupled in the inner parts of these galaxies.Comment: Accepted for publication in ApJ Letter

    Structure of the Three-dimensional Quantum Euclidean Space

    Full text link
    As an example of a noncommutative space we discuss the quantum 3-dimensional Euclidean space Rq3R^3_q together with its symmetry structure in great detail. The algebraic structure and the representation theory are clarified and discrete spectra for the coordinates are found. The q-deformed Legendre functions play a special role. A completeness relation is derived for these functions.Comment: 22 pages, late

    A Calculus Based on a q-deformed Heisenberg Algebra

    Full text link
    We show how one can construct a differential calculus over an algebra where position variables x and momentum variables p have be defined. As the simplest example we consider the one-dimensional q-deformed Heisenberg algebra. This algebra has a subalgebra generated by x and its inverse which we call the coordinate algebra. A physical field is considered to be an element of the completion of this algebra. We can construct a derivative which leaves invariant the coordinate algebra and so takes physical fields into physical fields. A generalized Leibniz rule for this algebra can be found. Based on this derivative differential forms and an exterior differential calculus can be constructed.Comment: latex-file, 23 page

    Cepheid and Tip of the Red Giant Branch Distances To the Dwarf Irregular Galaxy IC10

    Get PDF
    We present color-magnitude diagrams and luminosity functions of stars in the nearby galaxy IC 10, based on VI CCD photometry acquired with the COSMIC prime-focus camera on the Palomar 5m telescope. The apparent I-band luminosity function of stars in the halo of IC 10 shows an identifiable rise at I~21.7 mag. This is interpreted as being the tip of the red giant branch (TRGB) at M_V~-4 mag. Since IC 10 is at a very low Galactic latitude, its foreground extinction is expected to be high and the uncertainty associated with that correction is the largest contributor to the error associated with its distance determination. Multi-wavelength observations of Cepheid variable stars in IC 10 give a Population I distance modulus of 24.1 +- 0.2 mag, which corresponds to a linear distance of 660 +- 66 kpc for a total line-of-sight reddening of E(B-V) = 1.16 +- 0.08 mag, derived self-consistently from the Cepheid data alone. Applying this Population I reddening to the Population II halo stars gives a TRGB distance modulus of 23.5 +- 0.2 mag, corresponding to 500 +- 50 kpc. We consider this to be a lower limit on the TRGB distance. Reconciling the Cepheid and TRGB distances would require that the reddening to the halo is Δ\DeltaE(B-V) = 0.31 mag lower than that into the main body of the galaxy. This then suggests that the Galactic extinction in the direction of IC10 is (B-V) ~ 0.85

    The Curious Case of NGC6908

    Get PDF
    The object NGC6908 was once thought to be simply a surface-brightness enhancement in the eastern spiral arm of the nearby spiral galaxy NGC6907. Based on an examination of near-infrared imaging, the object is shown in fact to be a lenticular S0(6/7) galaxy hidden in the optical glare of the disk and spiral structure of the larger galaxy. New radial velocities of NGC6908 (3,060+/-16 (emission); 3,113+/-73 km/s (absorption)) have been obtained at the Baade 6.5m and the duPont 2.5m telescopes at Las Campanas, Chile placing NGC6908 at the same expansion-velocity distance as NGC6907 (3,190+/-5 km/s), eliminating the possibility of a purely chance line-of-sight coincidence. The once-enigmatic asymmetries in the disk and outer spiral structure of NGC6907 are now explained as being due to an advanced merger event. Newly discovered tails and debris in the outer reaches of this galaxy further support the merger scenario for this system. This pair of galaxies is a rather striking example of two objects discovered over 100 years ago, whose true nature was lost until modern detectors operating at infrared wavelengths gave us a new (high-contrast) look. Other examples of embedded merger remnants may also reveal themselves in the growing samples of near-infrared imaging of nearby galaxies; and a pilot study does reveal several other promising candidates for follow-up observations.Comment: 17 pages, 8 figures, accepted for publication in A

    MACHOs, White Dwarfs, and the Age of the Universe

    Full text link
    (Abridged Abstract) A favored interpretation of recent microlensing measurements towards the Large Magellanic Cloud implies that a large fraction (i.e. 10--50%) of the mass of the galactic halo is composed of white dwarfs. We compare model white dwarf luminosity functions to the data from the observational surveys in order to determine a lower bound on the age of any substantial white dwarf halo population (and hence possibly on the age of the Universe). We compare various theoretical white dwarf luminosity functions, in which we vary hese three parameters, with the abovementioned survey results. From this comparison, we conclude that if white dwarfs do indeed constitute more than 10% of the local halo mass density, then the Universe must be at least 10 Gyr old for our most extreme allowed values of the parameters. When we use cooling curves that account for chemical fractionation and more likely values of the IMF and the bolometric correction, we find tighter limits: a white dwarf MACHO fraction of 10% (30%) requires a minimum age of 14 Gyr (15.5 Gyr). Our analysis also indicates that the halo white dwarfs almost certainly have helium-dominated atmospheres.Comment: Final version accepted for publication, straight TeX formate, 6 figs, 22 page

    The Carnegie Supernova Project I. Photometry data release of low-redshift stripped-envelope supernovae

    Get PDF
    The first phase of the Carnegie Supernova Project (CSP-I) was a dedicated supernova follow-up program based at the Las Campanas Observatory that collected science data of young, low-redshift supernovae between 2004 and 2009. Presented in this paper is the CSP-I photometric data release of low-redshift stripped-envelope core-collapse supernovae. The data consist of optical (uBgVri) photometry of 34 objects, with a subset of 26 having near-infrared (YJH) photometry. Twenty objects have optical pre-maximum coverage with a subset of 12 beginning at least five days prior to the epoch of B-band maximum brightness. In the near-infrared, 17 objects have pre-maximum observations with a subset of 14 beginning at least five days prior to the epoch of J-band maximum brightness. Analysis of this photometric data release is presented in companion papers focusing on techniques to estimate host-galaxy extinction and the light-curve and progenitor star properties of the sample. The analysis of an accompanying visual-wavelength spectroscopy sample of ~150 spectra will be the subject of a future paper
    corecore