83 research outputs found

    Control of CydB and GltA1 Expression by the SenX3 RegX3 Two Component Regulatory System of Mycobacterium tuberculosis

    Get PDF
    Two component regulatory systems are used widely by bacteria to coordinate changes in global gene expression profiles in response to environmental signals. The SenX3-RegX3 two component system of Mycobacterium tuberculosis has previously been shown to play a role in virulence and phosphate-responsive control of gene expression. We demonstrate that expression of SenX3-RegX3 is controlled in response to growth conditions, although the absolute changes are small. Global gene expression profiling of a RegX3 deletion strain and wild-type strain in different culture conditions (static, microaerobic, anaerobic), as well as in an over-expressing strain identified a number of genes with changed expression patterns. Among those were genes previously identified as differentially regulated in aerobic culture, including ald (encoding alanine dehydrogenase) cyd,encoding a subunit of the cytochrome D ubiquinol oxidase, and gltA1, encoding a citrate synthase. Promoter activity in the upstream regions of both cydB and gltA1 was altered in the RegX3 deletion strain. DNA-binding assays confirmed that RegX3 binds to the promoter regions of ald, cydB and gltA1 in a phosphorylation-dependent manner. Taken together these data suggest a direct role for the SenX-RegX3 system in modulating expression of aerobic respiration, in addition to its role during phosphate limitation

    The Two-Domain LysX Protein of Mycobacterium tuberculosis Is Required for Production of Lysinylated Phosphatidylglycerol and Resistance to Cationic Antimicrobial Peptides

    Get PDF
    The well-recognized phospholipids (PLs) of Mycobacterium tuberculosis (Mtb) include several acidic species such as phosphatidylglycerol (PG), cardiolipin, phosphatidylinositol and its mannoside derivatives, in addition to a single basic species, phosphatidylethanolamine. Here we demonstrate that an additional basic PL, lysinylated PG (L-PG), is a component of the PLs of Mtb H37Rv and that the lysX gene encoding the two-domain lysyl-transferase (mprF)-lysyl-tRNA synthetase (lysU) protein is responsible for L-PG production. The Mtb lysX mutant is sensitive to cationic antibiotics and peptides, shows increased association with lysosome-associated membrane protein–positive vesicles, and it exhibits altered membrane potential compared to wild type. A lysX complementing strain expressing the intact lysX gene, but not one expressing mprF alone, restored the production of L-PG and rescued the lysX mutant phenotypes, indicating that the expression of both proteins is required for LysX function. The lysX mutant also showed defective growth in mouse and guinea pig lungs and showed reduced pathology relative to wild type, indicating that LysX activity is required for full virulence. Together, our results suggest that LysX-mediated production of L-PG is necessary for the maintenance of optimal membrane integrity and for survival of the pathogen upon infection

    Versatile Assays for High Throughput Screening for Activators or Inhibitors of Intracellular Proteases and Their Cellular Regulators

    Get PDF
    BACKGROUND: Intracellular proteases constitute a class of promising drug discovery targets. Methods for high throughput screening against these targets are generally limited to in vitro biochemical assays that can suffer many technical limitations, as well as failing to capture the biological context of proteases within the cellular pathways that lead to their activation. METHODS #ENTITYSTARTX00026; FINDINGS: We describe here a versatile system for reconstituting protease activation networks in yeast and assaying the activity of these pathways using a cleavable transcription factor substrate in conjunction with reporter gene read-outs. The utility of these versatile assay components and their application for screening strategies was validated for all ten human Caspases, a family of intracellular proteases involved in cell death and inflammation, including implementation of assays for high throughput screening (HTS) of chemical libraries and functional screening of cDNA libraries. The versatility of the technology was also demonstrated for human autophagins, cysteine proteases involved in autophagy. CONCLUSIONS: Altogether, the yeast-based systems described here for monitoring activity of ectopically expressed mammalian proteases provide a fascile platform for functional genomics and chemical library screening

    Metformin Prevents Nigrostriatal Dopamine Degeneration Independent of AMPK Activation in Dopamine Neurons

    Get PDF
    Metformin is a widely prescribed drug used to treat type-2 diabetes, although recent studies show it has wide ranging effects to treat other diseases. Animal and retrospective human studies indicate that Metformin treatment is neuroprotective in Parkinson’s Disease (PD), although the neuroprotective mechanism is unknown, numerous studies suggest the beneficial effects on glucose homeostasis may be through AMPK activation. In this study we tested whether or not AMPK activation in dopamine neurons was required for the neuroprotective effects of Metformin in PD. We generated transgenic mice in which AMPK activity in dopamine neurons was ablated by removing AMPK beta 1 and beta 2 subunits from dopamine transporter expressing neurons. These AMPK WT and KO mice were then chronically exposed to Metformin in the drinking water then exposed to MPTP, the mouse model of PD. Chronic Metformin treatment significantly attenuated the MPTP-induced loss of Tyrosine Hydroxylase (TH) neuronal number and volume and TH protein concentration in the nigrostriatal pathway. Additionally, Metformin treatment prevented the MPTP-induced elevation of the DOPAC:DA ratio regardless of genotype. Metformin also prevented MPTP induced gliosis in the Substantia Nigra. These neuroprotective actions were independent of genotype and occurred in both AMPK WT and AMPK KO mice. Overall, our studies suggest that Metformin’s neuroprotective effects are not due to AMPK activation in dopaminergic neurons and that more research is required to determine how metformin acts to restrict the development of PD

    Metformin and the gastrointestinal tract

    Get PDF
    Metformin is an effective agent with a good safety profile that is widely used as a first-line treatment for type 2 diabetes, yet its mechanisms of action and variability in terms of efficacy and side effects remain poorly understood. Although the liver is recognised as a major site of metformin pharmacodynamics, recent evidence also implicates the gut as an important site of action. Metformin has a number of actions within the gut. It increases intestinal glucose uptake and lactate production, increases GLP-1 concentrations and the bile acid pool within the intestine, and alters the microbiome. A novel delayed-release preparation of metformin has recently been shown to improve glycaemic control to a similar extent to immediate-release metformin, but with less systemic exposure. We believe that metformin response and tolerance is intrinsically linked with the gut. This review examines the passage of metformin through the gut, and how this can affect the efficacy of metformin treatment in the individual, and contribute to the side effects associated with metformin intolerance

    Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a global epidemic that poses a major challenge to health-care systems. Improving metabolic control to approach normal glycaemia (where practical) greatly benefits long-term prognoses and justifies early, effective, sustained and safety-conscious intervention. Improvements in the understanding of the complex pathogenesis of T2DM have underpinned the development of glucose-lowering therapies with complementary mechanisms of action, which have expanded treatment options and facilitated individualized management strategies. Over the past decade, several new classes of glucose-lowering agents have been licensed, including glucagon-like peptide 1 receptor (GLP-1R) agonists, dipeptidyl peptidase 4 (DPP-4) inhibitors and sodium/glucose cotransporter 2 (SGLT2) inhibitors. These agents can be used individually or in combination with well-established treatments such as biguanides, sulfonylureas and thiazolidinediones. Although novel agents have potential advantages including low risk of hypoglycaemia and help with weight control, long-term safety has yet to be established. In this Review, we assess the pharmacokinetics, pharmacodynamics and safety profiles, including cardiovascular safety, of currently available therapies for management of hyperglycaemia in patients with T2DM within the context of disease pathogenesis and natural history. In addition, we briefly describe treatment algorithms for patients with T2DM and lessons from present therapies to inform the development of future therapies

    Preferential binding of Escherichia coli RecF protein to gapped DNA in the presence of adenosine (gamma-thio) triphosphate.

    Full text link
    Escherichia coli RecF protein binds, but does not hydrolyze, ATP. To determine the role that ATP binding to RecF plays in RecF protein-mediated DNA binding, we have determined the interaction between RecF protein and single-stranded (ss)DNA, double-stranded (ds)DNA, and dsDNA containing ssDNA regions (gapped [g]DNA) either alone or in various combinations both in the presence and in the absence of adenosine (gamma-thio) triphosphate, gamma-S-ATP, a nonhydrolyzable ATP analog. Protein-DNA complexes were analyzed by electrophoresis on agarose gels and visualized by autoradiography. The type of protein-DNA complexes formed in the presence of gamma-S-ATP was different with each of the DNA substrates and from those formed in the absence of gamma-S-ATP. Competition experiments with various combinations of DNA substrates indicated that RecF protein preferentially bound gDNA in the presence of gamma-S-ATP, and the order of preference of binding was gDNA > dsDNA > ssDNA. Since gDNA has both ds- and ssDNA components, we suggest that the role for ATP in RecF protein-DNA interactions in vivo is to confer specificity of binding to dsDNA-ssDNA junctions, which is necessary for catalyzing DNA repair and recombination
    • …
    corecore