3 research outputs found

    Thermoelectric effect in high mobility single layer epitaxial graphene

    Full text link
    The thermoelectric response of high mobility single layer epitaxial graphene on silicon carbide substrates as a function of temperature and magnetic field have been investigated. For the temperature dependence of the thermopower, a strong deviation from the Mott relation has been observed even when the carrier density is high, which reflects the importance of the screening effect. In the quantum Hall regime, the amplitude of the thermopower peaks is lower than a quantum value predicted by theories, despite the high mobility of the sample. A systematic reduction of the amplitude with decreasing temperature suggests that the suppression of the thermopower is intrinsic to Dirac electrons in graphene.Comment: 5 pages, 4 figure

    Half integer quantum Hall effect in high mobility single layer epitaxial graphene

    Full text link
    The quantum Hall effect, with a Berry's phase of π\pi is demonstrated here on a single graphene layer grown on the C-face of 4H silicon carbide. The mobility is ∼\sim 20,000 cm2^2/V⋅\cdots at 4 K and ~15,000 cm2^2/V⋅\cdots at 300 K despite contamination and substrate steps. This is comparable to the best exfoliated graphene flakes on SiO2_2 and an order of magnitude larger than Si-face epitaxial graphene monolayers. These and other properties indicate that C-face epitaxial graphene is a viable platform for graphene-based electronics.Comment: Some modifications in the text and figures, 7 pages, 2 figure
    corecore