33 research outputs found

    TROP2 Expressed in the Trunk of the Ureteric Duct Regulates Branching Morphogenesis during Kidney Development

    Get PDF
    TROP2, a cell surface protein structurally related to EpCAM, is expressed in various carcinomas, though its function remains largely unknown. We examined the expression of TROP2 and EpCAM in fetal mouse tissues, and found distinct patterns in the ureteric bud of the fetal kidney, which forms a tree-like structure. The tip cells in the ureteric bud proliferate to form branches, whereas the trunk cells differentiate to form a polarized ductal structure. EpCAM was expressed throughout the ureteric bud, whereas TROP2 expression was strongest at the trunk but diminished towards the tips, indicating the distinct cell populations in the ureteric bud. The cells highly expressing TROP2 (TROP2high) were negative for Ki67, a proliferating cell marker, and TROP2 and collagen-I were co-localized to the basal membrane of the trunk cells. TROP2high cells isolated from the fetal kidney failed to attach and spread on collagen-coated plates. Using MDCK cells, a well-established model for studying the branching morphogenesis of the ureteric bud, TROP2 was shown to inhibit cell spreading and motility on collagen-coated plates, and also branching in collagen-gel cultures, which mimic the ureteric bud's microenvironment. These results together suggest that TROP2 modulates the interaction between the cells and matrix and regulates the formation of the ureteric duct by suppressing branching from the trunk during kidney development

    TIMP-1 Induces an EMT-Like Phenotypic Conversion in MDCK Cells Independent of Its MMP-Inhibitory Domain

    Get PDF
    Matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) regulate epithelial-mesenchymal transition (EMT) critical for the development of epithelial organs as well as cancer cell invasion. TIMP-1 is frequently overexpressed in several types of human cancers and serves as a prognostic marker. The present study investigates the roles of TIMP-1 on the EMT process and formation of the lumen-like structure in a 3D Matrigel culture of MDCK cells. We show that TIMP-1 overexpression effectively prevents cell polarization and acinar-like structure formation. TIMP-1 induces expression of the developmental EMT transcription factors such as SLUG, TWIST, ZEB1 and ZEB2, leading to downregulation of epithelial marker and upregulation of mesenchymal markers. Importantly, TIMP-1β€²s ability to induce the EMT-like process is independent of its MMP-inhibitory domain. To our surprise, TIMP-1 induces migratory and invasive properties in MDCK cells. Here, we present a novel finding that TIMP-1 signaling upregulates MT1-MMP and MMP-2 expression, and potentiates MT1-MMP activation of pro-MMP-2, contributing to tumor cell invasion. In spite of the fact that TIMP-1, as opposed to TIMP-2, does not interact with and inhibit MT1-MMP, TIMP-1 may act as a key regulator of MT1-MMP/MMP-2 axis. Collectively, our findings suggest a model in which TIMP-1 functions as a signaling molecule and also as an endogenous inhibitor of MMPs. This concept represents a paradigm shift in the current view of TIMP-1/MT1-MMP interactions and functions during cancer development/progression

    Transcriptional analysis of the bovine herpesvirus 1 Cooper isolate

    Full text link
    Blot hybridization analysis of infected bovine herpesvirus 1 (BHV-1) cellular RNA isolated at various times post infection and after treatment with specific metabolic inhibitors was used to characterize transcription of the BHV-1 Cooper isolate. Synthesis of BHV-1 RNA was detected as early as 3 h post infection and reached a maximum at six to eight hours post infection. The most transcriptionally active area of the genome was between map units 0.110 to 0.195, within the Hin dIII I fragment. From the entire genome a total of 59 transcripts ranging in size from approximately 0.6 to 10 kilobases were characterized as belonging to one of three distinct classes. Using the protein synthesis inhibitor cycloheximide, three immediate-early transcripts were identified as originating from the internal inverted repeat region between map units 0.734 and 0.842, corresponding to the Hin dIII D fragment. Using phosphonoacetic acid to prevent virus DNA synthesis by inhibition of the BHV-1 DNA polymerase, 28 early transcripts were recognized. The remaining 28 transcripts, classified as late RNA, were detected without the use of metabolic inhibitors at 6 to 8 h post infection. Transcription of early and late RNA was not restricted to any specific area of the genome. Eighty percent of the transcripts from both the Hin dIII A fragment, between map units 0.381 to 0.537 within the unique long segment, and the Hin dIII K fragment, between map units 0.840 to 0.907 of the unique short segment, were designated as belonging to the early class.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41672/1/705_2005_Article_BF01316744.pd
    corecore