32 research outputs found

    The inhibitory effect of an RGD-human chitin-binding domain fusion protein on the adhesion of fibroblasts to reacetylated chitosan films

    Get PDF
    Biomaterials used for tissue engineering applications must provide a structural support for the tissue development and also actively interact with cells, promoting adhesion, proliferation, and differentiation. To achieve this goal, adhesion molecules may be used, such as the tripeptide Arg-Gly-Asp (RGD). A method based on the use of a carbohydrate-binding module, with affinity for chitin, was tested as an alternative approach to the chemical grafting of bioactive peptides. This approach would simultaneously allow the production of recombinant peptides (alternatively to peptide synthesis) and provide a simple way for the specific and strong adsorption of the peptides to the biomaterial. A fusion recombinant protein, containing the RGD sequence fused to a human chitin-binding module (ChBM), was expressed in E. coli. The adhesion of fibroblasts to reacetylated chitosan (RC) films was the model system selected to analyze the properties of the obtained proteins. Thus, the evaluation of cell attachment and proliferation on polystyrene surfaces and reacetylated chitosan films, coated with the recombinant proteins, was performed using mouse embryo fibroblasts 3T3. The results show that the recombinant proteins affect negatively fibroblasts anchorage to the materials surface, inhibiting its adhesion and proliferation. We also conclude that this negative effect is fundamentally due to the human chitin-binding domain.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/27359/2006, POCTI/BIO/45356/200

    Repair and Reconstruction of a Resected Tumor Defect Using a Composite of Tissue Flap–Nanotherapeutic–Silk Fibroin and Chitosan Scaffold

    Get PDF
    A multifaceted strategy using a composite of anti-cancer nanotherapeutic and natural biomaterials silk fibroin (SF) and chitosan (CS) blend scaffolds was investigated for the treatment of a tissue defect post-tumor resection by providing local release of the therapeutic and filling of the defect site with the regenerative bioscaffolds. The scaffold-emodin nanoparticle composites were fabricated and characterized for drug entrapment and release, mechanical strength, and efficacy against GILM2 breast cancer cells in vitro and in vivo in a rat tumor model. Emodin nanoparticles were embedded in SF and SFCS scaffolds and the amount of emodin entrapment was a function of the scaffold composition and emodin loading concentration. In vitro, there was a burst release of emodin from all scaffolds during the first 2 days though it was detected even after 24 days. Increase in emodin concentration in the scaffolds decreased the overall elastic modulus and ultimate tensile strength of the scaffolds. After 6 weeks of in vivo implantation, the cell density (p < 0.05) and percent degradation (p < 0.01) within the remodeled no emodin SFCS scaffold was significantly higher than the emodin loaded SFCS scaffolds, although there was no significant difference in the amount of collagen deposition in the regenerated SFCS scaffold. The presence and release of emodin from the SFCS scaffolds inhibited the integration of SFCS into the adjacent tumor due to the formation of an interfacial barrier of connective tissue that was lacking in emodin-free SFCS scaffolds. While no significant difference in tumor size was observed between the in vivo tested groups, tumors treated with emodin loaded SFCS scaffolds had decreased presence and size and similar regeneration of new tissue as compared to no emodin SFCS scaffolds
    corecore