103 research outputs found

    Involvement of mutant and wild-type CYSLTR2 in the development and progression of uveal nevi and melanoma

    Get PDF
    BackgroundActivating G alpha (q) signalling mutations are considered an early event in the development of uveal melanoma. Whereas most tumours harbour a mutation in GNAQ or GNA11, CYSLTR2 (encoding G-protein coupled receptor CysLT(2)R) forms a rare alternative. The role of wild-type CysLT(2)R in uveal melanoma remains unknown.MethodsWe performed a digital PCR-based molecular analysis of benign choroidal nevi and primary uveal melanomas. Publicly available bulk and single cell sequencing data were mined to further study mutant and wild-type CYSLTR2 in primary and metastatic uveal melanoma.Results1/16 nevi and 2/120 melanomas carried the CYSLTR2 mutation. The mutation was found in a subpopulation of the nevus, while being clonal in both melanomas. In the melanomas, secondary, subclonal CYSLTR2 alterations shifted the allelic balance towards the mutant. The resulting genetic heterogeneity was confirmed in distinct areas of both tumours. At the RNA level, further silencing of wild-type and preferential expression of mutant CYSLTR2 was identified, which was also observed in two CYSLTR2 mutant primary melanomas and one metastatic lesion from other cohorts. In CYSLTR2 wild-type melanomas, high expression of CYSLTR2 correlated to tumour inflammation, but expression originated from melanoma cells specifically.ConclusionsOur findings suggest that CYSLTR2 is involved in both early and late development of uveal melanoma. Whereas the CYSLTR2 p.L129Q mutation is likely to be the initiating oncogenic event, various mechanisms further increase the mutant allele abundance during tumour progression. This makes mutant CysLT(2)R an attractive therapeutic target in uveal melanoma.Ophthalmic researc

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    GNAQ and GNA11 mutations and downstream YAP activation in choroidal nevi

    Get PDF
    Background: Mutations in GNAQ/11 genes are considered an early event in the development of uveal melanoma that may derive from a pre-existing nevus. The Hippo pathway, by way of YAP activation, rather than MAP kinase, has a role in the oncogenic capacity of GNAQ/11 mutations.Methods: We investigated 16 nevi from 13 human eyes for driver GNAQ/11 mutations using droplet digital PCR and determined whether nevi are clonal by quantifying mutant nevus cell fractions. Immunohistochemistry was performed on 15 nevi to analyse YAP activation.Results: For 15 out of 16 nevi, a GNAQ/11 mutation was detected in the nevus cells albeit at a low frequency with a median of 13%. Nuclear YAP, a transcriptional co-activator in the Hippo tumour-suppressor pathway, was detected in 14/15 nevi.Conclusions: Our analysis suggests that a mutation in GNAQ/11 occurs in a subset of choroidal nevus cells. We hypothesise that GNAQ/11 mutant-driven extracellular mitogenic signalling involving YAP activation leads to accumulation of wild-type nevus cells

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    The second-order Fourier coefficients (υ2_{2}) characterizing the azimuthal distributions of Υ(1S) and Υ(2S) mesons produced in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV are studied. The Υmesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb1^{-1}. The scalar product method is used to extract the υ2_{2} coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < pT_{T} < 50 GeV/c, and in three centrality ranges of 10–30%, 30–50% and 50–90%. In contrast to the J/ψ mesons, the measured υ2_{2} values for the Υ mesons are found to be consistent with zero

    Search for MSSM Higgs bosons decaying to μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at √s = 13 TeV

    Get PDF

    Measurement of prompt D0^{0} and D\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies

    Get PDF
    corecore