7 research outputs found

    Molecular epidemiology of AY.28 and AY.104 delta sub-lineages in Sri Lanka

    Get PDF
    Background: The worst SARS-CoV-2 outbreak in Sri Lanka was due to the two Sri Lankan delta sub-lineages AY.28 and AY.104. We proceeded to further characterize the mutations and clinical disease severity of these two sub-lineages. Methods: 705 delta SARS-CoV-2 genomes sequenced by our laboratory from mid-May to November 2021 using Illumina and Oxford Nanopore were included in the analysis. The clinical disease severity of 440/705 individuals were further analyzed to determine if infection with either AY.28 or AY.104 was associated with more severe disease. Sub-genomic RNA (sg-RNA) expression was analyzed using periscope. Results: AY.28 was the dominant variant throughout the outbreak, accounting for 67.7% of infections during the peak of the outbreak. AY.28 had three lineage defining mutations in the spike protein: A222V (92.80%), A701S (88.06%), and A1078S (92.04%) and seven in the ORF1a: R24C, K634N, P1640L, A2994V, A3209V, V3718A, and T3750I. AY.104 was characterized by the high prevalence of T95I (90.81%) and T572L (65.01%) mutations in the spike protein and by the absence of P1640L (94.28%) in ORF1a with the presence of A1918V (98.58%) mutation. The mean sgRNA expression levels of ORF6 in AY.28 were significantly higher compared to AY.104 (p < 0.0001) and B.1.617.2 (p < 0.01). Also, ORF3a showed significantly higher sgRNA expression in AY.28 compared to AY.104 (p < 0.0001). There was no difference in the clinical disease severity or duration of hospitalization in individuals infected with these sub lineages. Conclusions: Therefore, AY.28 and AY.104 appear to have a fitness advantage over the parental delta variant (B.1.617.2), while AY.28 also had a higher expression of sg-RNA compared to other sub-lineages. The clinical implications of these should be further investigated

    Genomic and Epidemiological Analysis of SARS-CoV-2 Viruses in Sri Lanka.

    Get PDF
    Background: In order to understand the molecular epidemiology of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Sri Lanka, since March 2020, we carried out genomic sequencing overlaid on available epidemiological data until April 2021. Methods: Whole genome sequencing was carried out on diagnostic sputum or nasopharyngeal swabs from 373 patients with COVID-19. Molecular clock phylogenetic analysis was undertaken to further explore dominant lineages. Results: The B.1.411 lineage was most prevalent, which was established in Sri Lanka and caused outbreaks throughout the country until March 2021. The estimated time of the most recent common ancestor (tMRCA) of this lineage was June 1, 2020 (with 95% lower and upper bounds March 30 to July 27) suggesting cryptic transmission may have occurred, prior to a large epidemic starting in October 2020. Returning travellers were identified with infections caused by lineage B.1.258, as well as the more transmissible B.1.1.7 lineage, which has replaced B.1.411 to fuel the ongoing large outbreak in the country. Conclusions: The large outbreak that started in early October, is due to spread of a single virus lineage, B.1.411 until the end of March 2021, when B.1.1.7 emerged and became the dominant lineage

    Transmission dynamics, clinical characteristics and sero-surveillance in the COVID-19 outbreak in a population dense area of Colombo, Sri Lanka April- May 2020

    Get PDF
    Background The transmission dynamics of SARS-CoV-2 varies depending on social distancing measures, circulating SARS-CoV-2 variants, host factors and other environmental factors. We sought to investigate the clinical and epidemiological characteristics of a SARS-CoV-2 outbreak that occurred in a highly dense population area in Colombo, Sri Lanka from April to May 2020. Methodology/principal findings We carried out RT-qPCR for SARS-CoV2, assessed the SARS-CoV-2 specific total and neutralizing antibodies (Nabs) in a densely packed, underserved settlement (n = 2722) after identification of the index case on 15th April 2020. 89/2722 individuals were detected as infected by RT-qPCR with a secondary attack rate among close contacts being 0.077 (95% CI 0.063–0.095). Another 30 asymptomatic individuals were found to have had COVID-19 based on the presence of SARS-CoV-2 specific antibodies. However, only 61.5% of those who were initially seropositive for SARS-CoV-2 had detectable total antibodies at 120 to 160 days, while only 40.6% had detectable Nabs. 74/89 (83.1%) of RT-qPCR positive individuals were completely asymptomatic and all 15 (16.9%) who experienced symptoms were classified as having a mild illness. 18 (20.2%) were between the ages of 61 to 80. 11/89 (12.4%) had diabetes, 8/89 (9%) had cardiovascular disease and 4 (4.5%) had asthma. Of the two viruses that were sequenced and were of the B.1 and B.4 lineages with one carrying the D614G mutation. Discussion/conclusion Almost all infected individuals developed mild or asymptomatic illness despite the presence of comorbid illnesses. Since the majority of those who were in this underserved settlement were not infected despite circulation of the D614G variant, it would be important to further study environmental and host factors that lead to disease severity and transmission

    Sensitivity and specificity of two WHO approved SARS-CoV2 antigen assays in detecting patients with SARS-CoV2 infection

    Get PDF
    Background: SARS-CoV-2 rapid antigen (Ag) detection kits are widely used in addition to quantitative reverse transcription PCR PCR (RT-qPCR), as they are cheaper with a rapid turnaround time. As there are many concerns regarding their sensitivity and specificity, in different settings, we evaluated two WHO approved rapid Ag kits in a large cohort of Sri Lankan individuals. Methods: Paired nasopharangeal swabs were obtained from 4786 participants for validation of the SD-Biosensor rapid Ag assay and 3325 for the Abbott rapid Ag assay, in comparison to RT-qPCR. A short questionnaire was used to record symptoms at the time of testing, and blood samples were obtained from 2721 of them for detection of SARS-CoV-2 specific antibodies. Results: The overall sensitivity of the SD-Biosensor Ag kit was 36.5% and the Abbott Ag test was 50.76%. The Abbott Ag test showed specificity of 99.4% and the SD-Biosensor Ag test 97.5%. At Ct values  30 (46.1 to 82.9%). 32.1% of those who gave a positive result with the SD-Biosensor Ag test and 26.3% of those who gave positive results with the Abbott Ag test had SARS-CoV-2 antibodies at the time of detection. Conclusions: Both rapid Ag tests appeared to be highly sensitive in detecting individuals at lower Ct values, in a community setting in Sri Lanka, but it will be important to further establish the relationship to infectivity

    Seroprevalence of SARS-CoV-2 infection in the Colombo Municipality region, Sri Lanka

    Get PDF
    Background: As the Municipality Council area in Colombo (CMC) experienced the highest number of cases until the end of January 2021, in Sri Lanka, we carried out a serosurvey prior to initiation of the vaccination program to understand the extent of the SARS-CoV-2 outbreak. Methods: SARS-CoV-2 seropositivity was determined in 2,547 individuals between the ages of 10–86 years, by the Wantai total antibody ELISA. We also compared seroprevalence using the haemagglutination test (HAT) to evaluate its usefulness in carrying out serosurveys. Results: The overall seropositivity rate was 24.46%, while seropositivity by HAT was 18.90%. Although The SARS-CoV-2 infection detection rates by PCR were highest in the population between the ages of 20–60 years of age, there was no statistically significant difference in the seropositivity rates in different age groups. For instance, although the seropositivity rate was highest in the 10–20 age group (34.03%), the PCR positivity rate was 9.80%. Differences in the PCR positivity rates and seropositivity rates were also seen in 60–70-year-olds (8.90 vs. 30.4%) and in individuals >70 years (4.10 vs. 1.20%). The seropositivity rate of the females was 29.70% (290/976), which was significantly higher (p < 0.002) than in males 21.2% (333/1,571). Conclusions: A high seroprevalence rate (24.5%) was seen in all age groups in the CMC suggesting that a high level of transmission was seen during this time. The higher PCR positivity rates between the ages of 20–60 are likely to be due to increased testing carried out in the working population. Therefore, the PCR positivity rates, appear to underestimate the true extent of the outbreak and the age groups which were infected

    Immune responses to a single dose of the AZD1222/Covishield vaccine in health care workers

    No full text
    Several COVID-19 vaccines have received emergency approval. Here we assess the immunogenicity of a single dose of the AZD1222 vaccine, at one month, in a cohort of health care workers (HCWs) (629 naïve and 26 previously infected). 93.4% of naïve HCWs seroconverted, irrespective of age and gender. Haemagglutination test for antibodies to the receptor binding domain (RBD), surrogate neutralization assay (sVNT) and ex vivo IFNγ ELISpot assays were carried out in a sub-cohort. ACE2 blocking antibodies (measured by sVNT) were detected in 67/69 (97.1%) of naïve HCWs. Antibody levels to the RBD of the wild-type virus were higher than to RBD of B.1.1.7, and titres to B.1.351 were very low. Ex vivo T cell responses were observed in 30.8% to 61.7% in naïve HCWs. Previously infected HCWs, developed significantly higher (p < 0.0001) ACE2 blocking antibodies and antibodies to the RBD for the variants B.1.1.7 and B.1.351. This study shows high seroconversion after one vaccine dose, but also suggests that one vaccine dose may be insufficient to protect against emerging variants

    Immune responses to a single dose of the AZD1222/Covishield vaccine in health care workers

    No full text
    Several COVID-19 vaccines have received emergency approval. Here we assess the immunogenicity of a single dose of the AZD1222 vaccine, at one month, in a cohort of health care workers (HCWs) (629 naïve and 26 previously infected). 93.4% of naïve HCWs seroconverted, irrespective of age and gender. Haemagglutination test for antibodies to the receptor binding domain (RBD), surrogate neutralization assay (sVNT) and ex vivo IFNγ ELISpot assays were carried out in a sub-cohort. ACE2 blocking antibodies (measured by sVNT) were detected in 67/69 (97.1%) of naïve HCWs. Antibody levels to the RBD of the wild-type virus were higher than to RBD of B.1.1.7, and titres to B.1.351 were very low. Ex vivo T cell responses were observed in 30.8% to 61.7% in naïve HCWs. Previously infected HCWs, developed significantly higher (p
    corecore