109 research outputs found
Recombinant Expression Screening of P. aeruginosa Bacterial Inner Membrane Proteins
<p>Abstract</p> <p>Background</p> <p>Transmembrane proteins (TM proteins) make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms.</p> <p>Results</p> <p>Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY). All the target proteins were from <it>P. aeruginosa</it>, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of <it>E. coli </it>strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%). In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices.</p> <p>Conclusions</p> <p>In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an <it>E. coli </it>expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical characteristics. Surveys like this one could aid in overcoming the technical bottlenecks in working with TM proteins and could potentially aid in increasing the rate of structure determination.</p
Gene-expression reversal of lncRNAs and associated mRNAs expression in active vs latent HIV infection
Interplay between lncRNAs and mRNAs is rapidly emerging as a key epigenetic mechanism in controlling various cell functions. HIV can actively infect and/or can persist latently for years by manipulating host epigenetics; however, its molecular essence remains undiscovered in entirety. Here for the first time, we delineate the influence of HIV on global lncRNAs expression in monocytic cells lines. Our analysis revealed the expression modulation of nearly 1060 such lncRNAs which are associated with differentially expressed mRNAs in active and latent infection. This suggests a greater role of lncRNAs in regulating transcriptional and post-transcriptional gene expression during HIV infection. The differentially expressed mRNAs were involved in several different biological pathways where immunological networks were most enriched. Importantly, we discovered that HIV induces expression reversal of more than 150 lncRNAs between its active and latent infection. Also, hundreds of unique lncRNAs were identified in both infection conditions. The pathology specific ?gene-expression reversal? and ?on-and-off? switching of lncRNAs and associated mRNAs may lead to establish the relationship between active and HIV infection
Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers
Although highly active anti-retroviral therapy has resulted in remarkable decline in the morbidity and mortality in AIDS patients, inadequately low delivery of anti-retroviral drugs across the bloodâbrain barrier results in virus persistence. The capability of high-efficacy-targeted drug delivery and on-demand release remains a formidable task. Here we report an in vitro study to demonstrate the on-demand release of azidothymidine 5âČ-triphosphate, an anti-human immunodeficiency virus drug, from 30ânm CoFe2O4@BaTiO3 magneto-electric nanoparticles by applying a low alternating current magnetic field. Magneto-electric nanoparticles as field-controlled drug carriers offer a unique capability of field-triggered release after crossing the bloodâbrain barrier. Owing to the intrinsic magnetoelectricity, these nanoparticles can couple external magnetic fields with the electric forces in drugâcarrier bonds to enable remotely controlled delivery without exploiting heat. Functional and structural integrity of the drug after the release was confirmed in in vitro experiments with human immunodeficiency virus-infected cells and through atomic force microscopy, spectrophotometry, Fourier transform infrared and mass spectrometry studies
Sustained-release nanoAR T formulation for the treatment of neuroAIDS
A novel approach was developed for the coencapsulation of an anti-HIV drug (tenofovir) and a latency-breaking agent (vorinostat), using magnetically guided layer-by-layer (LbL) assembled nanocarriers for the treatment of neuroAIDS. Ultrasmall iron oxide (Fe3O4) nanoparticles (10±3 nm) were synthesized and characterized. The LbL technique was used to achieve a sustained release profile, and application of 2 bilayers ([tenofovir+dextran sulphate]2+vorinostat)to magnetic nanoparticles resulted in a 2.8 times increase in drug (tenofovir) loading and also resulted in an increase in the drug release period by 30-fold, with 100% drug release in sustained manner over a period of 5 days with the simultaneous stimulation of latent HIV expression. Nanoformulation showed a good bloodâbrain barrier transmigration ability (37.95%±1.5%) with good in vitro antiviral efficacy (~33% reduction of p24 level) over a period of 5 days after HIV infection in primary human astrocytes, with good cell viability (.90%). Hence, LbL arrangements of drugs on magnetic nanoparticles provides sustained release and, therefore, may improve the patientâs adherence to therapy and lead to better compliance
- âŠ