134 research outputs found
The SWIRE-VVDS-CFHTLS surveys: stellar mass assembly over the last 10 Gyears. Evidence for a major build up of the red sequence between z=2 and z=1
(abridged abstract) We present an analysis of the stellar mass growth over
the last 10 Gyrs using a large 3.6 selected sample. We split our sample
into active (blue) and quiescent (red) galaxies. Our measurements of the K-LFs
and LD evolution support the idea that a large fraction of galaxies is already
assembled at . Based on the analysis of the evolution of the stellar
mass-to-light ratio (in K-band) for the spectroscopic sub-sample, we derive the
stellar mass density for the entire sample. We find that the global evolution
of the stellar mass density is well reproduced by the star formation rate
derived from UV dust corrected measurements. Over the last 8Gyrs, we observe
that the stellar mass density of the active population remains approximately
constant while it gradually increases for the quiescent population over the
same timescale. As a consequence, the growth of the stellar mass in the
quiescent population must be due to the shutoff of star formation in active
galaxies that migrate into the quiescent population. From to , we
observe a major build-up of the quiescent population with an increase by a
factor of 10 in stellar mass, suggesting that we are observing the epoch when
an increasing fraction of galaxies are ending their star formation activity and
start to build up the red sequence.Comment: Accepted to A&A with major changes. 1 table and 13 figure
The PEP survey: clustering of infrared-selected galaxies and structure formation at z~2 in the GOODS South
ABRIDGED-This paper presents the first direct estimate of the 3D clustering
properties of far-infrared sources up to z~3. This has been possible thanks to
the Pacs Evolutionary Probe (PEP) survey of the GOODS South field performed
with the PACS instrument onboard the Herschel Satellite. An analysis of the
two-point correlation function over the whole redshift range spanned by the
data reports for the correlation length, r_0~6.3 Mpc and r_0~6.7 Mpc,
respectively at 100um and 160um, corresponding to dark matter halo masses
M>~10^{12.4} M_sun. Objects at z~2 instead seem to be more strongly clustered,
with r_0~19 Mpc and r_0~17 Mpc in the two considered PACS channels. This
dramatic increase of the correlation length between z~1 and z~2 is connected
with the presence of a wide, M>~10^{14} M_sun, filamentary structure which
includes more than 50% of the sources detected at z~2. An investigation of the
properties of such sources indicates the possibility for boosted star-forming
activity in those which reside within the overdense environment with respect of
more isolated galaxies found in the same redshift range. Lastly, we also
present our results on the evolution of the relationship between luminous and
dark matter in star-forming galaxies between z~1 and z~2. We find that the
increase of (average) stellar mass in galaxies between z~1 and z~2 is
about a factor 10 lower than that of the dark matter haloes hosting such
objects ([z~1]/[z~2] ~ 0.4 vs M_{halo}[z~1]/M_{halo}[z~2] ~ 0.04). Our
findings agree with the evolutionary picture of downsizing whereby massive
galaxies at z~2 were more actively forming stars than their z~1 counterparts,
while at the same time contained a lower fraction of their mass in the form of
luminous matter.Comment: 14 pages, 8 figures, MNRAS accepte
Measuring our universe from galaxy redshift surveys
Galaxy redshift surveys have achieved significant progress over the last
couple of decades. Those surveys tell us in the most straightforward way what
our local universe looks like. While the galaxy distribution traces the bright
side of the universe, detailed quantitative analyses of the data have even
revealed the dark side of the universe dominated by non-baryonic dark matter as
well as more mysterious dark energy (or Einstein's cosmological constant). We
describe several methodologies of using galaxy redshift surveys as cosmological
probes, and then summarize the recent results from the existing surveys.
Finally we present our views on the future of redshift surveys in the era of
Precision Cosmology.Comment: 82 pages, 31 figures, invited review article published in Living
Reviews in Relativity, http://www.livingreviews.org/lrr-2004-
The Vimos VLT Deep Survey: Global properties of 20000 galaxies in the I_AB<=22.5 WIDE survey
The VVDS-Wide survey has been designed with the general aim of tracing the
large-scale distribution of galaxies at z~1 on comoving scales reaching
~100Mpc/h, while providing a good control of cosmic variance over areas as
large as a few square degrees. This is achieved by measuring redshifts with
VIMOS at the ESO VLT to a limiting magnitude I_AB=22.5, targeting four
independent fields with size up to 4 sq.deg. each. The whole survey covers 8.6
sq.deg., here we present the general properties of the current redshift sample.
This includes 32734 spectra in the four regions (19977 galaxies, 304 type I
AGNs, and 9913 stars), covering a total area of 6.1 sq.deg, with a sampling
rate of 22 to 24%. The redshift success rate is above 90% independently of
magnitude. It is the currently largest area coverage among redshift surveys
reaching z~1. We give the mean N(z) distribution averaged over 6.1 sq.deg.
Comparing galaxy densities from the four fields shows that in a redshift bin
Deltaz=0.1 at z~1 one still has factor-of-two variations over areas as large as
~0.25 sq.deg. This level of cosmic variance agrees with that obtained by
integrating the galaxy two-point correlation function estimated from the F22
field alone, and is also in fairly good statistical agreement with that
predicted by the Millennium mocks. The variance estimated over the survey
fields shows explicitly how clustering results from deep surveys of even ~1
sq.deg. size should be interpreted with caution. This paper accompanies the
public release of the first 18143 redshifts of the VVDS-Wide survey from the 4
sq.deg. contiguous area of the F22 field at RA=22h, publicly available at
http://cencosw.oamp.frComment: Accepted for publication on Astronomy & Astrophysic
The VIMOS VLT Deep Survey - Evolution of the luminosity functions by galaxy type up to z=1.5 from first epoch data
From the first epoch observations of the VVDS up to z=1.5 we have derived
luminosity functions (LF) of different spectral type galaxies. The VVDS data,
covering ~70% of the life of the Universe, allow for the first time to study
from the same sample and with good statistical accuracy the evolution of the
LFs by galaxy type in several rest frame bands from a purely magnitude selected
sample. The magnitude limit of the VVDS allows the determination of the faint
end slope of the LF with unprecedented accuracy. Galaxies have been classified
in four spectral classes, using their colours and redshift, and LFs have been
derived in the U, B, V, R and I rest frame bands from z=0.05 to z=1.5. We find
a significant steepening of the LF going from early to late types. The M*
parameter is significantly fainter for late type galaxies and this difference
increases in the redder bands. Within each of the galaxy spectral types we find
a brightening of M* with increasing redshift, ranging from =< 0.5 mag for early
type galaxies to ~1 mag for the latest type galaxies, while the slope of the LF
of each spectral type is consistent with being constant with redshift. The LF
of early type galaxies is consistent with passive evolution up to z~1.1, while
the number of bright early type galaxies has decreased by ~40% from z~0.3 to
z~1.1. We also find a strong evolution in the normalization of the LF of latest
type galaxies, with an increase of more than a factor 2 from z~0.3 to z~1.3:
the density of bright late type galaxies in the same redshift range increases
of a factor ~6.6. These results indicate a strong type-dependent evolution and
identifies the latest spectral types as responsible for most of the evolution
of the UV-optical luminosity function out to z=1.5.Comment: 18 pages with encapsulated figures, revised version after referee's
comments, accepted for publication in A&
Structural and functional analyses of Rubisco from arctic diatom species reveal unusual posttranslational modifications
The catalytic performance of the major CO2-assimilating enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), restricts photosynthetic productivity. Natural diversity in the catalytic properties of Rubisco indicates possibilities for improvement. Oceanic phytoplankton contain some of the most efficient Rubisco enzymes, and diatoms in particular are responsible for a significant proportion of total marine primary production as well as being a major source of CO2 sequestration in polar cold waters. Until now, the biochemical properties and three-dimensional structures of Rubisco from diatoms were unknown. Here, diatoms from Arctic waters were collected, cultivated and analyzed for their CO2 fixing capability. We characterized the kinetic properties of five, and determined the crystal structures of four Rubiscos selected for their high CO2-fixing efficiency. The DNA sequences of the rbcL and rbcS genes of the selected diatoms were similar, reflecting their close phylogenetic relationship. The Vmax and KM for the oxygenase and carboxylase activities at 25°C and the specificity factors (Sc /o) at 15, 25 and 35°C, were determined. The Sc/o values were high, approaching those of mono- and dicot plants, thus exhibiting good selectivity for CO2 relative to O2. Structurally, diatom Rubiscos belong to Form I C/D, containing small subunits characterised by a short βA-βB loop and a carboxy-terminal extension that forms a β- hairpin structure (βE-βF loop). Of note, the diatom Rubiscos featured a number of posttranslational modifications of the large subunit, including 4-hydroxy-proline, betahydroxyleucine, hydroxylated, and nitrosylated cysteine, mono-, and di-hydroxylated lysine, and tri-methylated lysine. Our studies suggest adaptation toward achieving efficient CO2-fixation in Arctic diatom Rubiscos
Large Scale Structure of the Universe
Galaxies are not uniformly distributed in space. On large scales the Universe
displays coherent structure, with galaxies residing in groups and clusters on
scales of ~1-3 Mpc/h, which lie at the intersections of long filaments of
galaxies that are >10 Mpc/h in length. Vast regions of relatively empty space,
known as voids, contain very few galaxies and span the volume in between these
structures. This observed large scale structure depends both on cosmological
parameters and on the formation and evolution of galaxies. Using the two-point
correlation function, one can trace the dependence of large scale structure on
galaxy properties such as luminosity, color, stellar mass, and track its
evolution with redshift. Comparison of the observed galaxy clustering
signatures with dark matter simulations allows one to model and understand the
clustering of galaxies and their formation and evolution within their parent
dark matter halos. Clustering measurements can determine the parent dark matter
halo mass of a given galaxy population, connect observed galaxy populations at
different epochs, and constrain cosmological parameters and galaxy evolution
models. This chapter describes the methods used to measure the two-point
correlation function in both redshift and real space, presents the current
results of how the clustering amplitude depends on various galaxy properties,
and discusses quantitative measurements of the structures of voids and
filaments. The interpretation of these results with current theoretical models
is also presented.Comment: Invited contribution to be published in Vol. 8 of book "Planets,
Stars, and Stellar Systems", Springer, series editor T. D. Oswalt, volume
editor W. C. Keel, v2 includes additional references, updated to match
published versio
The VIMOS VLT Deep Survey: Evolution of the non-linear galaxy bias up to z=1.5
We present the first measurements of the Probability Distribution Function
(PDF) of galaxy fluctuations in the VIMOS-VLT Deep Survey (VVDS) cone, covering
0.4x0.4 deg between 0.4<z<1.5. The second moment of the PDF, i.e. the rms
fluctuations of the galaxy density field, is with good approximation constant
over the full redshift baseline investigated: we find that, in redshift space,
sigma_8 for galaxies brighter than M=-20+5log h has a mean value of 0.94\pm0.07
in the redshift interval 0.7<z<1.5. The third moment, i.e. the skewness,
increases with cosmic time: we find that the probability of having underdense
regions is greater at z~0.7 than it was at z~1.5. By comparing the PDF of
galaxy density contrasts with the theoretically predicted PDF of mass
fluctuations we infer the redshift-, density-, and scale-dependence of the
biasing function b(z, \delta, R) between galaxy and matter overdensities up to
redshift z=1.5. Our results can be summarized as follows: i) the galaxy bias is
an increasing function of redshift: evolution is marginal up to z~0.8 and more
pronounced for z>0.8; ii) the formation of bright galaxies is inhibited below a
characteristic mass-overdensity threshold whose amplitude increases with
redshift and luminosity; iii) the biasing function is non linear in all the
redshift bins investigated with non-linear effects of the order of a few to 10%
on scales >5Mpc.Comment: 30 pages, 17 figs, Accepted by A&
The use of the Nintendo Wii in motor rehabilitation for virtual reality interventions:a literature review
Several review articles have been published on the use of Virtual Reality (VR) in motor rehabilitation. The majority of these focus on the effectiveness of VR on improving motor function using relatively expensive commercial tools and technologies including robotics, cybergloves, cybergrasps, joysticks, force sensors and motion capture systems. However, we present the case in this chapter that game sensors and VR technologies which can be customized and reconfigured, such as the Nintendo Wii, provide an alternative and affordable VR intervention for rehabilitation. While the performance of many of the Wii based interventions in motor rehabilitation are currently the focus of investigation by researchers, an extensive and holistic discussion on this subject does not yet exist. As such, the purpose of this chapter is to provide readers with an understanding of the advantages and limitations of the Nintendo Wii game sensor device (and its associated accessories) for motor rehabilitation and in addition, to outline the potential for incorporating these into clinical interventions for the benefit of patients and therapists
- …