204 research outputs found
ANTARES search for point-sources of neutrinos using astrophysical catalogs: a likelihood stacking analysis
A search for astrophysical point-like neutrino sources using the data
collected by the ANTARES detector between January 29, 2007 and December 31,
2017 is presented. A likelihood stacking method is used to assess the
significance of an excess of muon neutrinos inducing track-like events in
correlation with the location of a list of possible sources. Different sets of
objects are tested in the analysis: a) a sub-sample of the \textit{Fermi} 3LAC
catalog of blazars, b) a jet-obscured AGN population, c) a sample of soft
gamma-ray selected radio galaxies, d) a star-forming galaxy catalog , and e) a
public sample of 56 very-high-energy track events from the IceCube experiment.
None of the tested sources shows a significant association with the sample of
neutrinos detected by ANTARES. The smallest p-value is obtained for the radio
galaxies catalog with an equal weights hypothesis, with a pre-trial p-value
equivalent to a excess, equivalent to
post-trial.
In addition, the results of a dedicated analysis for the blazar MG3
J225517+2409 are also reported: this source is found to be the most significant
within the \textit{Fermi} 3LAC sample, with 5 ANTARES events located at less
than one degree from the source. This blazar showed evidence of flaring
activity in \textit{Fermi} data, in space-time coincidence with a high-energy
track detected by IceCube. An \emph{a posteriori} significance of for the combination of ANTARES and IceCube data is reported
Search for neutrino counterparts to the gravitational wave sources from O3 catalogues with the ANTARES detector
Since 2015 the LIGO and Virgo interferometers have detected gravitational
waves from almost one hundred coalescences of compact objects (black holes and
neutron stars). This article presents the results of a search performed with
data from the ANTARES telescope to identify neutrino counterparts to the
gravitational wave sources detected during the third LIGO/Virgo observing run
and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is
sensitive to all-sky neutrinos of all flavours and of energies GeV,
thanks to the inclusion of both track-like events (mainly induced by
charged-current interactions) and shower-like events (induced by other
interaction types). Neutrinos are selected if they are detected within s from the GW merger and with a reconstructed direction compatible with
its sky localisation. No significant excess is found for any of the 80 analysed
GW events, and upper limits on the neutrino emission are derived. Using the
information from the GW catalogues and assuming isotropic emission, upper
limits on the total energy and on the fraction of the total
energy budget emitted as neutrinos of
all flavours are also computed. Finally, a stacked analysis of all the 72
binary black hole mergers (respectively the 7 neutron star - black hole merger
candidates) has been performed to constrain the typical neutrino emission
within this population, leading to the limits: erg and (respectively, erg and ) for spectrum and isotropic emission.
Other assumptions including softer spectra and non-isotropic scenarios have
also been tested.Comment: 13 pages, 4 figure
Review of the online analyses of multi-messenger alerts and electromagnetic transient events with the ANTARES neutrino telescope
By constantly monitoring at least one complete hemisphere of the sky,
neutrino telescopes are well designed to detect neutrinos emitted by transient
astrophysical events. Real-time searches with the ANTARES telescope have been
performed to look for neutrino candidates coincident with gamma-ray bursts
detected by the Swift and Fermi satellites, highenergy neutrino events
registered by IceCube, transient events from blazars monitored by HAWC,
photon-neutrino coincidences by AMON notices and gravitational wave candidates
observed by LIGO/Virgo. By requiring temporal coincidence, this approach
increases the sensitivity and the significance of a potential discovery. Thanks
to the good angular accuracy of neutrino candidates reconstructed with the
ANTARES telescope, a coincident detection can also improve the positioning area
of non-well localised triggers such as those detected by gravitational wave
interferometers. This paper summarises the results of the follow-up performed
by the ANTARES telescope between 01/2014 and 02/2022, which corresponds to the
end of the data taking period.Comment: 21 pages, 10 figures, JCAP08 (2023) 072 (19 p
Limits on the nuclearite flux using the ANTARES neutrino telescope
In this work, a search for nuclearites of strange quark matter by using nine
years of ANTARES data taken in the period 2009-2017 is presented. The passage
through matter of these particles is simulated %according to the model of de
R\'{u}jula and Glashow taking into account a detailed description of the
detector response to nuclearites and of the data acquisition conditions. A
down-going flux of cosmic nuclearites with Galactic velocities () was considered for this study. The mass threshold for detecting these
particles at the detector level is \mbox{ GeV/c}.
Upper limits on the nuclearite flux for masses up to GeV/c at
the level of cm s sr are
obtained. These are the first upper limits on nuclearites established with a
neutrino telescope and the most stringent ever set for Galactic velocities.Comment: 17 pages, 7 figure
Search for magnetic monopoles with ten years of the ANTARES neutrino telescope
This work presents a new search for magnetic monopoles using data taken with the ANTARES neutrino telescope over a period of 10 years (January 2008 to December 2017). Compared to previous ANTARES searches, this analysis uses a run-by-run simulation strategy, with a larger exposure as well as a new simulation of magnetic monopoles taking into account the Kasama, Yang and Goldhaber model for their interaction cross-section with matter. No signal compatible with the passage of relativistic magnetic monopoles is observed, and upper limits on the flux of magnetic monopoles with β=v/c≥0.55, are presented. For ultra-relativistic magnetic monopoles the flux limit is ∼7×10−18 cm−2s−1sr−1
KM3NeT broadcast optical data transport system
The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed
Searches for neutrinos in the direction of radio-bright blazars with the ANTARES telescope
Active galaxies, especially blazars, are among the most promising neutrino
source candidates. To date, ANTARES searches for these objects considered
GeV-TeV -ray bright blazars. Here, a statistically complete
radio-bright blazar sample is used as the target for searches of origins of
neutrinos collected by the ANTARES neutrino telescope over 13 years of
operation. The hypothesis of a neutrino-blazar directional correlation is
tested by pair counting and by a complementary likelihood-based approach. The
resulting post-trial -value is ( in the two-sided
convention), possibly indicating a correlation. Additionally, a time-dependent
analysis is performed to search for temporal clustering of neutrino candidates
as a mean of detecting neutrino flares in blazars. None of the investigated
sources alone reaches a significant flare detection level. However, the
presence of 18 sources with a pre-trial significance above indicates
a ( in the two-sided convention) detection of a
time-variable neutrino flux. An \textit{a posteriori} investigation reveals an
intriguing temporal coincidence of neutrino, radio, and -ray flares of
the J0242+1101 blazar at a ( in the two-sided convention)
level. Altogether, the results presented here suggest a possible connection of
neutrino candidates detected by the ANTARES telescope with radio-bright
blazars
Measurement of the atmospheric νe and νμ energy spectra with the ANTARES neutrino telescope
The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'Energie Atomique et aux Energies Alternatives(CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), Labex UnivEarthS(ANR-10-LABX-0023 and ANR-18-IDEX-0001), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-AlpesCote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Instituto Nazionale di Fisica Nucleare(INFN), Italy; Nederlandse Organisatie voor Wetenschappelijk Onderzoek(NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia e Innovacion (MCI) and Agencia Estatal de Investigacion: Programa Estatal de Generacion de Conocimiento (refs. PGC2018096663-B-C41, -A-C42, -B-C43, -B-C44) (MCI/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider, Junta de Andalucia (ref. SOMM17/6104/UGR and A-FQM-053-UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'Energie Atomique et aux Energies Alternatives(CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), Labex UnivEarthS(ANR-10-LABX-0023 and ANR-18-IDEX-0001), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-AlpesCote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Instituto Nazionale di Fisica Nucleare(INFN), Italy; Nederlandse Organisatie voor Wetenschappelijk Onderzoek(NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia e Innovacion (MCI) and Agencia Estatal de Investigacion: Programa Estatal de Generacion de Conocimiento (refs. PGC2018096663-B-C41, -A-C42, -B-C43, -B-C44) (MCI/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider, Junta de Andalucia (ref. SOMM17/6104/UGR and A-FQM-053-UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.This letter presents a combined measurement of the energy spectra of atmospheric nu(e) and nu(mu) in the energy range between similar to 100 GeV and similar to 50 TeV with the ANTARES neutrino telescope. The analysis uses 3012 days of detector livetime in the period 2007-2017, and selects 1016 neutrinos interacting in (or close to) the instrumented volume of the detector, yielding shower-like events (mainly from nu(e) + (nu) over bar (e) charged current plus all neutrino neutral current interactions) and starting track events (mainly from nu(mu) + (nu) over bar (mu) charged current interactions). The contamination by atmospheric muons in the final sample is suppressed at the level of a few per mill by different steps in the selection analysis, including a Boosted Decision Tree classifier. The distribution of reconstructed events is unfolded in terms of electron and muon neutrino fluxes. The derived energy spectra are compared with previous measurements that, above 100 GeV, are limited to experiments in polar ice and, for nu(mu), to Super-Kamiokande.Centre National de la Recherche Scientifique (CNRS)French Atomic Energy CommissionCommission Europeenne (FEDER fund)Institut Universitaire de France (IUF)Labex UnivEarthS
ANR-10-LABX-0023
ANR-18-IDEX-0001Region Ile-de-FranceRegion Grand-EstRegion Provence-Alpes-Cote d'AzurRegion Provence-Alpes-Cote d'AzurFederal Ministry of Education & Research (BMBF)Instituto Nazionale di Fisica Nucleare(INFN), ItalyNetherlands Organization for Scientific Research (NWO)Netherlands GovernmentCouncil of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, RussiaConsiliul National al Cercetarii Stiintifice (CNCS)Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (UEFISCDI)Spanish Government
PGC2018096663-B-C41
PGC2018096663-A-C42
PGC2018096663-B-C43
PGC2018096663-B-C44Severo Ochoa Centre of Excellence and MultiDark ConsoliderJunta de Andalucia
SOMM17/6104/UGR
A-FQM-053-UGR18Generalitat Valenciana: Grisolia program, Spain
GRISOLIA/2018/119Generalitat Valenciana: GenT program, Spain
CIDEGENT/2018/034Ministry of Higher Education, Scientific Research and Professional Training, MoroccoAgencia Estatal de Investigacion
PGC2018096663-B-C41
PGC2018096663-A-C42
PGC2018096663-B-C43
PGC2018096663-B-C44Commission Europeenne (Marie Curie Program
Probing invisible neutrino decay with KM3NeT-ORCA
In the era of precision measurements of the neutrino oscillation parameters,
upcoming neutrino experiments will also be sensitive to physics beyond the
Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring
atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the
sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A
three-flavour neutrino oscillation scenario, where the third neutrino mass
state decays into an invisible state, e.g. a sterile neutrino, is
considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino
decays with ~ at confidence
level, assuming true normal ordering. Finally, the impact of neutrino decay on
the precision of KM3NeT/ORCA measurements for ,
and mass ordering have been studied. No significant effect of neutrino decay on
the sensitivity to these measurements has been found.Comment: 27 pages, 14 figures, bibliography updated, typos correcte
Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling
KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea.
It will house a neutrino telescope comprising hundreds of networked moorings — detection units
or strings — equipped with optical instrumentation to detect the Cherenkov radiation generated
by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings
typically used for oceanography, several key features of the KM3NeT string are different: the
instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema®
ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper
wires for data and power transmission, respectively, runs along the full length of the mooring. Also,
compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in
Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for
support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period
of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings,
a custom-made, fast deployment method was designed. Despite the length of several hundreds of
metres, the slim design of the string allows it to be compacted into a small, re-usable spherical
launching vehicle instead of deploying the mooring weight down from a surface vessel. After
being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle
rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater
self-unrolling are detailed in this paper.French National Research Agency (ANR)
ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS)European Union (EU)Institut Universitaire de France (IUF)LabEx UnivEarthS
ANR-10-LABX-0023
ANR-18-IDEX-0001Paris Ile-de-France Region, FranceShota Rustaveli National Science Foundation of Georgia (SRNSFG), Georgia
FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MUR), PRIN Italy
NAT-NET 2017W4HA7SMinistry of Higher Education, Scientific Research and Professional Training, MoroccoNetherlands Organization for Scientific Research (NWO)
Netherlands GovernmentNational Science Center, Poland
National Science Centre, Poland
2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovación, Investigación y Universidades (MCIU): Programa Estatal de Generación de Conocimiento (MCIU/FEDER)
PGC2018-096663-B-C41
PGC2018-096663-B-A-C42
PGC2018-096663-B-BC43
PGC2018-096663-B-B-C44Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucía
SOMM17/6104/UGRGeneralitat Valenciana
GRISOLIA/2018/119
CIDEGENT/2018/034La Caixa Foundation
LCF/BQ/IN17/11620019EU: MSC program, Spain
71367
- …