6,063 research outputs found
Schedulability analysis of timed CSP models using the PAT model checker
Timed CSP can be used to model and analyse real-time and concurrent behaviour of embedded control systems. Practical CSP implementations combine the CSP model of a real-time control system with prioritized scheduling to achieve efficient and orderly use of limited resources. Schedulability analysis of a timed CSP model of a system with respect to a scheduling scheme and a particular execution platform is important to ensure that the system design satisfies its timing requirements. In this paper, we propose a framework to analyse schedulability of CSP-based designs for non-preemptive fixed-priority multiprocessor scheduling. The framework is based on the PAT model checker and the analysis is done with dense-time model checking on timed CSP models. We also provide a schedulability analysis workflow to construct and analyse, using the proposed framework, a timed CSP model with scheduling from an initial untimed CSP model without scheduling. We demonstrate our schedulability analysis workflow on a case study of control software design for a mobile robot. The proposed approach provides non-pessimistic schedulability results
Higgs Boson Properties and BSM Higgs Boson Searches at LHC
At the end of 2008, the Large Hadron Collider (LHC) will come into operation and the two experiments ATLAS and CMS will start taking data from proton-proton collisions at a center-of-mass energy of \sqrt{s}=14 TeV. In preparation for the data taking period, the discovery potential for Higgs bosons beyond the Standard Model has been updated by both experiments and is reviewed here. In addition, the prospects for measuring the properties of a Higgs boson like its mass and width, its CP eigenvalues and its couplings to fermions and gauge bosons are discussed
Higgs Properties and BSM Higgs Boson Searches at the LHC
At the end of 2008, the Large Hadron Collider (LHC) will come into operation and the two experiments ATLAS and CMS will start taking data from proton-proton collisions at a center-of-mass energy of sqrt{s}=14 TeV. In preparation for the data taking period, the discovery potential for Higgs bosons beyond the Standard Model has been updated by both experiments and is reviewed here. In addition, the prospects for measuring the properties of a Higgs boson like its mass and width, its CP eigenvalues and its couplings to fermions and gauge bosons are discussed
Hydrodynamic lift of vesicles under shear flow in microgravity
The dynamics of a vesicle suspension in a shear flow between parallel plates
has been investigated under microgravity conditions, where vesicles are only
submitted to hydrodynamic effects such as lift forces due to the presence of
walls and drag forces. The temporal evolution of the spatial distribution of
the vesicles has been recorded thanks to digital holographic microscopy, during
parabolic flights and under normal gravity conditions. The collected data
demonstrates that vesicles are pushed away from the walls with a lift velocity
proportional to where is the shear rate,
the vesicle radius and its distance from the wall. This scaling as well
as the dependence of the lift velocity upon vesicle aspect ratio are consistent
with theoretical predictions by Olla [J. Phys. II France {\bf 7}, 1533--1540
(1997)].Comment: 6 pages, 8 figure
Abrupt grain boundary melting in ice
The effect of impurities on the grain boundary melting of ice is investigated
through an extension of Derjaguin-Landau-Verwey-Overbeek theory, in which we
include retarded potential effects in a calculation of the full frequency
dependent van der Waals and Coulombic interactions within a grain boundary. At
high dopant concentrations the classical solutal effect dominates the melting
behavior. However, depending on the amount of impurity and the surface charge
density, as temperature decreases, the attractive tail of the dispersion force
interaction begins to compete effectively with the repulsive screened Coulomb
interaction. This leads to a film-thickness/temperature curve that changes
depending on the relative strengths of these interactions and exhibits a
decrease in the film thickness with increasing impurity level. More striking is
the fact that at very large film thicknesses, the repulsive Coulomb interaction
can be effectively screened leading to an abrupt reduction to zero film
thickness.Comment: 8 pages, 1 figur
Generalized Interpolation Material Point Approach to High Melting Explosive with Cavities Under Shock
Criterion for contacting is critically important for the Generalized
Interpolation Material Point(GIMP) method. We present an improved criterion by
adding a switching function. With the method dynamical response of high melting
explosive(HMX) with cavities under shock is investigated. The physical model
used in the present work is an elastic-to-plastic and thermal-dynamical model
with Mie-Gr\"uneissen equation of state. We mainly concern the influence of
various parameters, including the impacting velocity , cavity size , etc,
to the dynamical and thermodynamical behaviors of the material. For the
colliding of two bodies with a cavity in each, a secondary impacting is
observed. Correspondingly, the separation distance of the two bodies has a
maximum value in between the initial and second impacts. When the
initial impacting velocity is not large enough, the cavity collapses in a
nearly symmetric fashion, the maximum separation distance increases
with . When the initial shock wave is strong enough to collapse the cavity
asymmetrically along the shock direction, the variation of with
does not show monotonic behavior. Our numerical results show clear indication
that the existence of cavities in explosive helps the creation of ``hot
spots''.Comment: Figs.2,4,7,11 in JPG format; Accepted for publication in J. Phys. D:
Applied Physic
First detection and energy measurement of recoil ions following beta decay in a Penning trap with the WITCH experiment
The WITCH experiment (Weak Interaction Trap for CHarged particles) will
search for exotic interactions by investigating the beta-neutrino angular
correlation via the measurement of the recoil energy spectrum after beta decay.
As a first step the recoil ions from the beta-minus decay of 124In stored in a
Penning trap have been detected. The evidence for the detection of recoil ions
is shown and the properties of the ion cloud that forms the radioactive source
for the experiment in the Penning trap are presented.Comment: 9 pages, 6 figures (9 figure files), submitted to European Physical
Journal
Introducing Multi-Core at Automotive Engine Systems
International audienceWith the introduction of the new Euro 6, and Euro 7 emission standards for passenger cars, the combustion process of Engine Management Systems (EMS) needs to be controlled with an increased precision.In addition, new vehicle architectures are introduced (increased integration of functions inside an Engine Management System), as well as new SW architectures concepts like AUTOSAR or the support of ISO26262
How universal is the fractional-quantum-Hall edge Luttinger liquid?
This article reports on our microscopic investigations of the edge of the
fractional quantum Hall state at filling factor . We show that the
interaction dependence of the wave function is well described in an
approximation that includes mixing with higher composite-fermion Landau levels
in the lowest order. We then proceed to calculate the equal time edge Green
function, which provides evidence that the Luttinger exponent characterizing
the decay of the Green function at long distances is interaction dependent. The
relevance of this result to tunneling experiments is discussed.Comment: 5 page
- …