7 research outputs found

    Targeting endoglin expressing cells in the tumor microenvironment does not inhibit tumor growth in a pancreatic cancer mouse model

    No full text
    Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer and is known to have low immunogenicity and an immunosuppressive microenviron-ment. It is also characterized by high accumulation of dense stroma, composed of mostly cancer-associated fibroblasts (CAFs). Multiple subsets of CAFs are described, with one of them expressing the transforming growth factor (TGF)-β co-receptor endoglin. In previous work, we and others have shown that endoglin-expressing CAFs stimulate tumor progression and metastasis. Therefore, in this study, we set out to investigate the role of endoglin-expressing CAFs in pancreatic cancer progression. Methods: First, we investigated the expression of endoglin on CAFs in both human tissues as well as a mouse model for PDAC. Since CAF-specific endoglin expression was high, we targeted endoglin by using the endoglin neutralizing antibody TRC105 in the murine KPC model for PDAC. Results: Although some signs of immune activation were observed, TRC105 did not affect tumor growth. Since 90% of the CD8+ T-cells expressed the immune checkpoint PD-1, we investigated the combination with a PD1 checkpoint inhibitor, which did not enhance therapeutic responses. Finally, genetic deletion of endoglin from collagen 1a1 expressing cells also did not affect the growth of the mouse KPC tumors. Conclusion: Our results show that although endoglin is highly expressed on PDAC-CAFs and signaling is efficiently inhibited by TRC105, this does not result in decreased tumor growth in the KPC model for pancreatic cancer

    A MYC/GCN2/eIF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer

    Get PDF
    Tumours depend on altered rates of protein synthesis for growth and survival, which suggests that mechanisms controlling mRNA translation may be exploitable for therapy. Here, we show that loss of APC, which occurs almost universally in colorectal tumours, strongly enhances the dependence on the translation initiation factor eIF2B5. Depletion of eIF2B5 induces an integrated stress response and enhances translation of MYC via an internal ribosomal entry site. This perturbs cellular amino acid and nucleotide pools, strains energy resources and causes MYC-dependent apoptosis. eIF2B5 limits MYC expression and prevents apoptosis in APC-deficient murine and patient-derived organoids and in APC-deficient murine intestinal epithelia in vivo. Conversely, the high MYC levels present in APC-deficient cells induce phosphorylation of eIF2α via the kinases GCN2 and PKR. Pharmacological inhibition of GCN2 phenocopies eIF2B5 depletion and has therapeutic efficacy in tumour organoids, which demonstrates that a negative MYC–eIF2α feedback loop constitutes a targetable vulnerability of colorectal tumours

    Targeting Endoglin-Expressing Regulatory T Cells in the Tumor Microenvironment Enhances the Effect of PD1 Checkpoint Inhibitor Immunotherapy

    No full text
    Purpose: Endoglin is a coreceptor for TGFb ligands that is highly expressed on proliferating endothelial cells and other cells in the tumor microenvironment. Clinical studies have noted increased programmed cell death (PD)-1 expression on cytotoxic T cells in the peripheral blood of patients with cancer treated with TRC105, an endoglin-targeting antibody. In this study, we investigated the combination of endoglin antibodies (TRC105 and M1043) with an anti-PD1 antibody. Experimental Design: The combination anti-endoglin/anti-PD1 antibodies was tested in four preclinical mouse models representing different stages of cancer development. To investigate the underlying mechanism, Fc-receptor–knockout mice were used complemented with depletion of multiple immune subsets in mice. Tumor growth and the composition of immune infiltrate were analyzed by flow cytometry. Finally, human colorectal cancer specimens were analyzed for presence of endoglin-expressing regulatory T cells (Treg). Results: In all models, the combination of endoglin antibody and PD1 inhibition produced durable tumor responses, leading to complete regressions in 30% to 40% of the mice. These effects were dependent on the presence of Fcg receptors, indicating the involvement of antibody-dependent cytotoxic responses and the presence of CD8þ cytotoxic T cells and CD4þ Th cells. Interestingly, treatment with the endoglin antibody, TRC105, significantly decreased the number of intratumoral Tregs. Endoglin-expressing Tregs were also detected in human colorectal cancer specimens. Conclusions: Taken together, these data provide a rationale for combining TRC105 and anti-PD1 therapy and provide additional evidence of endoglin's immunomodulatory role

    Activin Receptor-like Kinase 1 Ligand Trap Reduces Microvascular Density and Improves Chemotherapy Efficiency to Various Solid Tumors

    No full text
    PURPOSE: Antiangiogenic therapy, mostly targeting VEGF, has been applied in cancer patients for the last decade. However, resistance to anti-VEGF therapy and/or no significant benefit as monotherapeutic agent is often observed. Therefore, new antiangiogenic strategies are needed. In the current study, we investigated the therapeutic effect of interfering with the bone morphogenetic protein (BMP)9/activin receptor-like kinase (ALK)1 signaling pathway by using an ALK1-Fc ligand trap. EXPERIMENTAL DESIGN: We analyzed the potential antiangiogenic and antitumor effects of ALK1-Fc protein as monotherapy and in combination with chemotherapy in vivo in mouse models of melanoma, head and neck cancer, and invasive lobular breast carcinomas. ALK1-Fc sequesters BMP9 and 10 and prevents binding of these ligands to endothelial ALK1, which regulates angiogenesis. RESULTS: Treatment of mice with ALK1-Fc strongly decreased the tumors' microvascular density in the three different mouse cancer models. However, this effect was not accompanied by a reduction in tumor volume. An immunohistochemical analysis of the tumor samples revealed that ALK1-Fc treatment increased the pericyte coverage of the remaining tumor vessels and decreased the hypoxia within the tumor. Next, we observed that combining ALK1-Fc with cisplatin inhibited tumor growth in the breast and head and neck cancer models more efficiently than chemotherapy alone. CONCLUSIONS: The addition of ALK1-Fc to the cisplatin treatment was able to enhance the cytotoxic effect of the chemotherapy. Our results provide strong rationale to explore combined targeting of ALK1 with chemotherapy in a clinical setting, especially in the ongoing phase II clinical trials with ALK1-Fc

    Phenotypic plasticity underlies local invasion and distant metastasis in colon cancer

    Get PDF
    Phenotypic plasticity represents the most relevant hallmark of the carcinoma cell as it bestows it with the capacity of transiently altering its morphological and functional features while en route to the metastatic site. However, the study of phenotypic plasticity is hindered by the rarity of these events within primary lesions and by the lack of experimental models. Here, we identified a subpopulation of phenotypic plastic colon cancer cells: EpCAMlo cells are motile, invasive, chemo-resistant, and highly metastatic. EpCAMlo bulk and single-cell RNAseq analysis indicated (1) enhanced Wnt/β-catenin signaling, (2) a broad spectrum of degrees of epithelial to mesenchymal transition (EMT) activation including hybrid E/M states (partial EMT) with highly plastic features, and (3) high correlation with the CMS4 subtype, accounting for colon cancer cases with poor prognosis and a pronounced stromal component. Of note, a signature of genes specifically expressed in EpCAMlo cancer cells is highly predictive of overall survival in tumors other than CMS4, thus highlighting the relevance of quasi-mesenchymal tumor cells across the spectrum of colon cancers. Enhanced Wnt and the downstream EMT activation represent key events in eliciting phenotypic plasticity along the invasive front of primary colon carcinomas. Distinct sets of epithelial and mesenchymal genes define transcriptional trajectories through which state transitions arise. pEMT cells, often earmarked by the extracellular matrix glycoprotein SPARC together with nuclear ZEB1 and β-catenin along the invasive front of primary colon carcinomas, are predicted to represent the origin of these (de)differentiation routes through biologically distinct cellular states and to underlie the phenotypic plasticity of colon cancer cells

    A MYC–GCN2–eIF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer

    No full text
    Tumours depend on altered rates of protein synthesis for growth and survival, which suggests that mechanisms controlling mRNA translation may be exploitable for therapy. Here, we show that loss of APC, which occurs almost universally in colorectal tumours, strongly enhances the dependence on the translation initiation factor eIF2B5. Depletion of eIF2B5 induces an integrated stress response and enhances translation of MYC via an internal ribosomal entry site. This perturbs cellular amino acid and nucleotide pools, strains energy resources and causes MYC-dependent apoptosis. eIF2B5 limits MYC expression and prevents apoptosis in APC-deficient murine and patient-derived organoids and in APC-deficient murine intestinal epithelia in vivo. Conversely, the high MYC levels present in APC-deficient cells induce phosphorylation of eIF2α via the kinases GCN2 and PKR. Pharmacological inhibition of GCN2 phenocopies eIF2B5 depletion and has therapeutic efficacy in tumour organoids, which demonstrates that a negative MYC–eIF2α feedback loop constitutes a targetable vulnerability of colorectal tumours
    corecore