25 research outputs found

    Passive sentence reversal errors in autism: Replicating Ambridge, Bidgood, and Thomas (2020)

    Get PDF
    Ambridge, Bidgood, and Thomas (2020) conducted an elicitation-production task in which children with and without (high-functioning) autism described animations following priming with passive sentences. The authors report that children with autism were more likely than IQ-matched children without autism to commit reversal errors, for instance describing a scene in which the character Wendy surprised the character Bob by saying Wendy was surprised by Bob. We set out to test whether this effect replicated in a new sample of children with and without (high-functioning) autism (N = 26), and present a cumulative analysis in which data from the original study and the replication were pooled (N = 56). The main effect reported by Ambridge et al. (2020) replicated: While children with and without autism produced a similar number of passive responses in general, the responses of children with autism were significantly more likely to include reversal errors. Despite age-appropriate knowledge of constituent order in passive syntax, thematic role assignment is impaired among some children with high-functioning autism

    Resting Subtropical Grasslands from Grazing in the Wet Season Boosts Biocrust Hotspots to Improve Soil Health

    Get PDF
    Effective grazing management in Australia’s semi-arid rangelands requires monitoring landscape conditions and identifying sustainable and productive practice through understanding the interactions of environmental factors and management of soil health. Challenges include extreme rainfall variability, intensifying drought, and inherently nutrient-poor soils. We investigated the impacts of grazing strategies on landscape function—specifically soil health—as the foundation for productive pastures, integrating the heterogenous nature of grass tussocks and the interspaces that naturally exist in between them. At Wambiana—a long-term research site in north-eastern Australia—we studied two soil types, two stocking rates (high, moderate), and resting land from grazing during wet seasons (rotational spelling). Rotational spelling had the highest biocrust (living soil cover), in interspaces and under grass tussocks. Biocrusts were dominated by cyanobacteria that binds soil particles, reduces erosion, sequesters carbon, fixes nitrogen, and improves soil fertility. Rotational spelling with a moderate stocking rate emerged as best practice at these sites, with adjustment of stocking rates in line with rainfall and soil type recommended. In drought-prone environments, monitoring the presence and integrity of biocrusts connects landscape function and soil health. Biocrusts that protect and enrich the soil will support long-term ecosystem integrity and economic profitability of cattle production in rangelands

    Marine microbial metagenomes sampled across space and time

    Get PDF
    Recent advances in understanding the ecology of marine systems have been greatly facilitated by the growing availability of metagenomic data, which provide information on the identity, diversity and functional potential of the microbial community in a particular place and time. Here we present a dataset comprising over 5 terabases of metagenomic data from 610 samples spanning diverse regions of the Atlantic and Pacific Oceans. One set of metagenomes, collected on GEOTRACES cruises, captures large geographic transects at multiple depths per station. The second set represents two years of time-series data, collected at roughly monthly intervals from 3 depths at two long-term ocean sampling sites, Station ALOHA and BATS. These metagenomes contain genomic information from a diverse range of bacteria, archaea, eukaryotes and viruses. The data's utility is strengthened by the availability of extensive physical, chemical, and biological measurements associated with each sample. We expect that these metagenomes will facilitate a wide range of comparative studies that seek to illuminate new aspects of marine microbial ecosystems

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Fire frequency has a contrasting effect on vegetation and topsoil in subcoastal heathland, woodland and forest ecosystems, south‐east Queensland, Australia

    Get PDF
    Ecosystems managed with contrasting fire regimes provide insight into the responses of vegetation and soil. Heathland, woodland and forest ecosystems along a gradient of resource availability were burnt over four decades in approximately 3- or 5-year intervals or were unburnt for 45–47 years (heathland, woodland), or experienced infrequent wildfires (forest: 14 years since the last fire). We hypothesized that, relative to unburnt or infrequent fires, frequent burning would favour herbaceous species over woody species and resprouting over obligate seeder species, and reduce understorey vegetation height, and topsoil carbon and nitrogen content. Our hypothesis was partially supported in that herbaceous plant density was higher in frequently burnt vegetation; however, woody plant density was also higher in frequently burnt areas relative to unburnt/infrequently burnt areas, across all ecosystems. In heathland, omission of frequent fire resulted in the dominance of fern Gleichenia dicarpa and subsequent competitive exclusion of understorey species and lower species diversity. As hypothesized, frequent burning in woodland and forest increased the density of facultative resprouters and significantly reduced soil organic carbon levels relative to unburnt sites. Our findings confirm that regular burning conserves understorey diversity and maintains an understorey of lower statured herbaceous plants, although demonstrates the potential trade-off of frequent burning with lower topsoil carbon levels in the woodland and forest. Some ecosystem specific responses to varied fire frequencies were observed, reflecting differences in species composition and fire response traits between ecosystems. Overall, unburnt vegetation resulted in the dominance of some species over others and the different vegetation types were able to withstand relatively high-frequency fire without the loss of biodiversity, mainly due to high environmental productivity and short juvenile periods

    Passive sentence reversal errors in autism: Replicating Ambridge, Bidgood, and Thomas (2020)

    Full text link
    Ambridge, Bidgood, and Thomas (2020) conducted an elicitation-production task in which children with and without (high-functioning) autism described animations following priming with passive sentences. The authors report that children with autism were more likely than IQ-matched children without autism to commit reversal errors, for instance describing a scene in which the character Wendy surprised the character Bob by saying Wendy was surprised by Bob. We set out to test whether this effect replicated in a new sample of children with and without (high-functioning) autism (N = 26), and present a cumulative analysis in which data from the original study and the replication were pooled (N = 56). The main effect reported by Ambridge et al. (2020) replicated: While children with and without autism produced a similar number of passive responses in general, the responses of children with autism were significantly more likely to include reversal errors. Despite age- appropriate knowledge of constituent order in passive syntax, thematic role assignment is impaired among some children with high-functioning autism
    corecore