2 research outputs found

    RSSI and Machine Learning-Based Indoor Localization Systems for Smart Cities

    No full text
    The rapid expansion of the Internet of Things (IoT) and Machine Learning (ML) has significantly increased the demand for Location-Based Services (LBS) in today’s world. Among these services, indoor positioning and navigation have emerged as crucial components, driving the growth of indoor localization systems. However, using GPS in indoor environments is impractical, leading to a surge in interest in Received Signal Strength Indicator (RSSI) and machine learning-based algorithms for in-building localization and navigation in recent years. This paper aims to provide a comprehensive review of the technologies, applications, and future research directions of ML-based indoor localization for smart cities. Additionally, it examines the potential of ML algorithms in improving localization accuracy and performance in indoor environments

    A Review of Indoor Positioning Systems for UAV Localization with Machine Learning Algorithms

    No full text
    The potential of indoor unmanned aerial vehicle (UAV) localization is paramount for diversified applications within large industrial sites, such as hangars, malls, warehouses, production lines, etc. In such real-time applications, autonomous UAV location is required constantly. This paper comprehensively reviews radio signal-based wireless technologies, machine learning (ML) algorithms and ranging techniques that are used for UAV indoor positioning systems. UAV indoor localization typically relies on vision-based techniques coupled with inertial sensing in indoor Global Positioning System (GPS)-denied situations, such as visual odometry or simultaneous localization and mapping employing 2D/3D cameras or laser rangefinders. This work critically reviews the research and systems related to mini-UAV localization in indoor environments. It also provides a guide and technical comparison perspective of different technologies, presenting their main advantages and disadvantages. Finally, it discusses various open issues and highlights future directions for UAV indoor localization
    corecore