62 research outputs found
THE INFLUENCES OF COVID-19 ON THE JOB SATISFACTION OF STUDENT CONDUCT ADMINISTRATORS AT INSTITUTIONS OF HIGHER EDUCATION IN THE STATE OF FLORIDA
The purpose of this qualitative phenomenological study was to explore the job satisfaction of student conduct administrators (SCAs) at institutions of higher education in the state of Florida during times of COVID-19. Student conduct issues constantly change on college campuses, and the demands for SCAs to evolve with the changes take a toll on their mental and physical health. SCAs are responsible for maintaining ethical, academic, and social integrity by providing oversight and enforcement of codes of student conduct at institutions of higher education. In times of crisis, like the COVID-19 pandemic, the role of the SCA increases to take on additional responsibilities beyond the traditional scope of the job. This can lead to role ambiguity and conflict that create dissatisfaction in the work. Herzberg\u27s Motivation-Hygiene theory, which looks at job satisfaction and job dissatisfaction on disparate continuums, was used as the theoretical framework for the study. Nine SCAs participated in semi-structured interviews using Zoom video and Otter AI transcription to gather rich and robust information about their lived experiences. Findings of the study revealed four themes: communication, support, well-being, and transition. The transition theme consisted of three sub-themes: before the transition; working remotely; and transition back to campus. The findings from this study suggested that SCAs are overall satisfied with their job, even in the face of COVID-19. However, conflicting satisfaction results for administrative policies and factors for work-life led to an inconclusive finding
Diurnal Distribution of Very Heavy Precipitation Over the Central and Eastern United States
A climatology of heavy precipitation events for the states of Nebraska, Missouri, Illinois, Kentucky, Tennessee, West Virginia, Pennsylvania, and Virginia is developed from 10 years (1968-1977) of Hourly Precipitation Data. Hourly precipitation events are categorized by severity, ranging from 1 to 2 inches (2.5 to 5.1 cm) in one hour or less (Type 1) to 4 or more inches (greater than 10.2 cm) in eight hours or less (Type 4). Hourly distributions of heavy precipitation events indicate that intense rainfalls of short duration occur most frequently during the afternoon and evening hours; whereas Type 4 events, which pose the most serious threat of flash flooding occur most often during the night and early morning hours in the central and eastern United States
Model based dynamics analysis in live cell microtubule images
Background: The dynamic growing and shortening behaviors of microtubules are central to the fundamental roles played by microtubules in essentially all eukaryotic cells. Traditionally, microtubule behavior is quantified by manually tracking individual microtubules in time-lapse images under various experimental conditions. Manual analysis is laborious, approximate, and often offers limited analytical capability in extracting potentially valuable information from the data. Results: In this work, we present computer vision and machine-learning based methods for extracting novel dynamics information from time-lapse images. Using actual microtubule data, we estimate statistical models of microtubule behavior that are highly effective in identifying common and distinct characteristics of microtubule dynamic behavior. Conclusion: Computational methods provide powerful analytical capabilities in addition to traditional analysis methods for studying microtubule dynamic behavior. Novel capabilities, such as building and querying microtubule image databases, are introduced to quantify and analyze microtubule dynamic behavior
Human Prion Diseases in the United States
BACKGROUND: Prion diseases are a family of rare, progressive, neurodegenerative disorders that affect humans and animals. The most common form of human prion disease, Creutzfeldt-Jakob disease (CJD), occurs worldwide. Variant CJD (vCJD), a recently emerged human prion disease, is a zoonotic foodborne disorder that occurs almost exclusively in countries with outbreaks of bovine spongiform encephalopathy. This study describes the occurrence and epidemiology of CJD and vCJD in the United States. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of CJD and vCJD deaths using death certificates of US residents for 1979-2006, and those identified through other surveillance mechanisms during 1996-2008. Since CJD is invariably fatal and illness duration is usually less than one year, the CJD incidence is estimated as the death rate. During 1979 through 2006, an estimated 6,917 deaths with CJD as a cause of death were reported in the United States, an annual average of approximately 247 deaths (range 172-304 deaths). The average annual age-adjusted incidence for CJD was 0.97 per 1,000,000 persons. Most (61.8%) of the CJD deaths occurred among persons >or=65 years of age for an average annual incidence of 4.8 per 1,000,000 persons in this population. Most deaths were among whites (94.6%); the age-adjusted incidence for whites was 2.7 times higher than that for blacks (1.04 and 0.40, respectively). Three patients who died since 2004 were reported with vCJD; epidemiologic evidence indicated that their infection was acquired outside of the United States. CONCLUSION/SIGNIFICANCE: Surveillance continues to show an annual CJD incidence rate of about 1 case per 1,000,000 persons and marked differences in CJD rates by age and race in the United States. Ongoing surveillance remains important for monitoring the stability of the CJD incidence rates, and detecting occurrences of vCJD and possibly other novel prion diseases in the United States
Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its \u27Minimal Information for Studies of Extracellular Vesicles\u27, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
- …