32 research outputs found

    Bacterial sporulation: Pole-to-pole protein oscillation

    Get PDF
    AbstractSporulating bacteria need to temporally coordinate DNA replication, chromosome partitioning and sporulation initiation. Recent work has shown that one aspect of this coordination lies with the interdependent subcellular localization of two proteins, Spo0J and Soj, and in the Spo0J-dependent spatial oscillation of Soj

    Early events of Bacillus anthracis germination identified by time-course quantitative proteomics

    Full text link
    Germination of Bacillus anthracis spores involves rehydration of the spore interior and rapid degradation of several of the protective layers, including the spore coat. Here, we examine the temporal changes that occur during B. anthracis spore germination using an isobaric tagging system. Over the course of 17ā€‰min from the onset of germination, the levels of at least 19 spore proteins significantly decrease. Included are acid-soluble proteins, several known and predicted coat proteins, and proteins of unknown function. Over half of these proteins are small (less than 100 amino acids) and would have been undetectable by conventional gel-based analysis. We also identified 20 proteins, whose levels modestly increased at the later time points when metabolism has likely resumed. Taken together, our data show that isobaric labeling of complex mixtures is particularly effective for temporal studies. Furthermore, we describe a rigorous statistical approach to define relevant changes that takes into account the nature of data obtained from multidimensional protein identification technology coupled with the use of isobaric tags. This study provides an expanded list of the proteins that may be involved in germination of the B.Ā anthracis spore and their relative levels during germination.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55849/1/5199_ftp.pd

    Characterization of a Bacillus anthracis spore coat-surface protein that influences coat-surface morphology

    Full text link
    Bacterial spores are encased in a multilayered proteinaceous shell, called the coat. In many Bacillus spp., the coat protects against environmental assault and facilitates germination. In Bacillus anthracis , the spore is the etiological agent of anthrax, and the functions of the coat likely contribute to virulence. Here, we characterize a B. anthracis spore protein, called CotĪ’, which is encoded only in the genomes of the Bacillus cereus group. We found that CotĪ’ is synthesized specifically during sporulation and is assembled onto the spore coat surface. Our analysis of a cotĪ’ null mutant in the Sterne strain reveals that CotĪ’ has a role in determining coat-surface morphology but does not detectably affect germination. In the fully virulent Ames strain, a cotĪ’ null mutation has no effect on virulence in a murine model of B. anthracis infection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72138/1/j.1574-6968.2008.01380.x.pd

    High-Resolution Anatomy of a Progressively Pinching Cell Division

    No full text

    Prokaryotic Development: Emerging Insights

    No full text

    Polar Localization of a Soluble Methyl-Accepting Protein of Pseudomonas aeruginosa

    No full text
    A soluble methyl-accepting chemotaxis protein (MCP) of Pseudomonas aeruginosa, McpS, showed polar localization by immunofluorescence microscopy. Overexpression of McpS resulted in a dominant-negative effect on chemotaxis and caused a loss of polar clustering of the general MCP population. The polar localization of a soluble MCP defines a third, and unexpected, paradigm for cellular MCP localization
    corecore