86 research outputs found
Mitochondria, Oxidative Stress, cAMP Signalling and Apoptosis: A Crossroads in Lymphocytes of Multiple Sclerosis, a Possible Role of Nutraceutics
Multiple sclerosis (MS) is a complex inflammatory and neurodegenerative chronic disease that involves the immune and central nervous systems (CNS). The pathogenesis involves the loss of blood–brain barrier integrity, resulting in the invasion of lymphocytes into the CNS with consequent tissue damage. The MS etiology is probably a combination of immunological, genetic, and environmental factors. It has been proposed that T lymphocytes have a main role in the onset and propagation of MS, leading to the inflammation of white matter and myelin sheath destruction. Cyclic AMP (cAMP), mitochondrial dysfunction, and oxidative stress exert a role in the alteration of T lymphocytes homeostasis and are involved in the apoptosis resistance of immune cells with the consequent development of autoimmune diseases. The defective apoptosis of autoreactive lymphocytes in patients with MS, allows these cells to perpetuate, within the CNS, a continuous cycle of inflammation. In this review, we discuss the involvement in MS of cAMP pathway, mitochondria, reactive oxygen species (ROS), apoptosis, and their interaction in the alteration of T lymphocytes homeostasis. In addition, we discuss a series of nutraceutical compounds that could influence these aspect
Effect of Cladribine on Neuronal Apoptosis: New Insight of In Vitro Study in Multiple Sclerosis Therapy
Background: Cladribine (2-CdA) can cross the blood–brain barrier, resulting in inhibition of DNA synthesis and repair and disruption of cellular proliferation in actively dividing lymphocytes. No data on effect on neurons are available. Aim: To study “in vitro” 2-CdA apoptotic effects on neurons in healthy donor and multiple sclerosis patient lymphocytes. Methods: Neuroblastoma cells were co-cultured with lymphocytes, with and without 2-CdA. Results: Apoptosis increased in lymphocytes with 2-CdA; increase was also observed when lymphocytes were cultured with neuronal cells. However, neurons were not affected by 2-CdA for apoptosis. Conclusions: 2-CdA causes peripheral and central lymphocyte death preserving neurons, with a reasonable impact on inflammation and neuroprotection
- …