27 research outputs found
Direct numerical simulation of transitional and turbulent flow over a heated flat plate using finite-difference schemes
This report deals with the direct numerical simulation of transitional and turbulent flow at low Mach numbers using high-order-accurate finite-difference techniques. A computation of transition to turbulence of the spatially-evolving boundary layer on a heated flat plate in the presence of relatively high freestream turbulence was performed. The geometry and flow conditions were chosen to match earlier experiments. The development of the momentum and thermal boundary layers was documented. Velocity and temperature profiles, as well as distributions of skin friction, surface heat transfer rate, Reynolds shear stress, and turbulent heat flux, were shown to compare well with experiment. The results indicate that the essential features of the transition process have been captured. The numerical method used here can be applied to complex geometries in a straightforward manner
Aerodynamic Design Using Neural Networks
The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics
NASA Fixed Wing Project Propulsion Research and Technology Development Activities to Reduce Thrust Specific Energy Consumption
This paper presents an overview of the propulsion research and technology portfolio of NASA Fundamental Aeronautics Program Fixed Wing Project. The research is aimed at significantly reducing the thrust specific fuel/energy consumption of notional advanced fixed wing aircraft (by 60 % relative to a baseline Boeing 737-800 aircraft with CFM56-7B engines) in the 2030-2035 time frame. The research investments described herein are aimed at improving propulsive efficiency through higher bypass ratio fans, improving thermal efficiency through compact high overall pressure ratio gas generators, and exploring the potential benefits of boundary layer ingestion propulsion and hybrid gas-electric propulsion concepts
Development of a Perfectly Matched Layer Technique for a Discontinuous-Galerkin Spectral-Element Method
The numerical simulation of many aerodynamic non-periodic flows of practical interest involves discretized computational domains that often must be artificially truncated. Appropriate boundary conditions are required at these truncated domain boundaries, and ideally, these boundary conditions should be perfectly "absorbing" or "nonreflecting" so that they do not contaminate the flow field in the interior of the domain. The proper specification of these boundaries is critical to the stability, accuracy, convergence, and quality of the numerical solution, and has been the topic of considerable research. The need for accurate boundary specification has been underscored in recent years with efforts to apply higher-fidelity methods (DNS, LES) in conjunction with high-order low-dissipation numerical schemes to realistic flow configurations. One of the most popular choices for specifying these boundaries is the characteristics-based boundary condition where the linearized flow field at the boundaries are decomposed into characteristic waves using either one-dimensional Riemann or other multi-dimensional Riemann approximations. The values of incoming characteristics are then suitably modified. The incoming characteristics are specified at the in flow boundaries, and at the out flow boundaries the variation of the incoming characteristic is zeroed out to ensure no reflection. This, however, makes the problem ill-posed requiring the use of an ad-hoc parameter to allow small reflections that make the solution stable. Generally speaking, such boundary conditions work reasonably well when the characteristic flow direction is normal to the boundary, but reflects spurious energy otherwise. An alternative to the characteristic-based boundary condition is to add additional "buffer" regions to the main computational domain near the artificial boundaries, and solve a different set of equations in the buffer region in order to minimize acoustic reflections. One approach that has been used involves modeling the pressure fluctuations as acoustic waves propagating in the far-field relative to a single noise-source inside the buffer region. This approach treats vorticity-induced pressure fluctuations the same as acoustic waves. Another popular approach, often referred to as the "sponge layer," attempts to dampen the flow perturbations by introducing artificial dissipation in the buffer region. Although the artificial dissipation removes all perturbations inside the sponge layer, incoming waves are still reflected from the interface boundary between the computational domain and the sponge layer. The effect of these refkections can be somewhat mitigated by appropriately selecting the artificial dissipation strength and the extent of the sponge layer. One of the most promising variants on the buffer region approach is the Perfectly Matched Layer (PML) technique. The PML technique mitigates spurious reflections from boundaries and interfaces by dampening the perturbation modes inside the buffer region such that their eigenfunctions remain unchanged. The technique was first developed by Berenger for application to problems involving electromagnetic wave propagation. It was later extended to the linearized Euler, Euler and Navier-Stokes equations by Hu and his coauthors. The PML technique ensures the no-reflection property for all waves, irrespective of incidence angle, wavelength, and propagation direction. Although the technique requires the solution of a set of auxiliary equations, the computational overhead is easily justified since it allows smaller domain sizes and can provide better accuracy, stability, and convergence of the numerical solution. In this paper, the PML technique is developed in the context of a high-order spectral-element Discontinuous Galerkin (DG) method. The technique is compared to other approaches to treating the in flow and out flow boundary, such as those based on using characteristic boundary conditions and sponge layers. The superiority of the current PML technique over other approaches is demonstrated for a range of test cases, viz., acoustic pulse propagation, convective vortex, shear layer flow, and low-pressure turbine cascade flow. The paper is structured as follows. We first derive the PML equations from the non{linear Euler equations. A short description of the higher-order DG method used is then described. Preliminary results for the four test cases considered are then presented and discussed. Details regarding current work that will be included in the final paper are also provided
Prediction of turbine rotor-stator interaction using Navier-Stokes methods
Flows in turbomachinery are generally complex and do not easily lend themselves to numerical computation. The flows are three-dimensional and inherently unsteady. Complicated blade geometries and flow phenomena such as separation and periodic transition from laminar to turbulent flow add to the numerical complexity. Nevertheless, the accurate numerical analysis of such flows is a problem of considerable interest and practical importance to the turbomachinery community. Much of the early work in turbomachinery flow prediction focussed on airfoil cascades. While such analyses of flows in isolated airfoil rows have helped improve understanding of the flow phenomena and have gained widespread acceptance in the industrial community as a design tool, they do not yield any information regarding the unsteady effects arising out of rotor-stator aerodynamic interaction. These interaction effects become increasingly important as the distance between successive stator and rotor rows is decreased. Thus, the need exists for analytical tools that treat the rotor and stator airfoils as a system and provide information regarding the magnitude and the impact of the unsteady effects. The focus a three-dimensional, time-accurate, thin-layer Navier-Stokes code that was recently developed to study rotor-stator interaction problems. A system of patched and overlaid grids that move relative to each other is used to discretize the flow field and the governing equations are integrated using a third-order upwind scheme set in an iterative, implicit framework. The code was used to simulate subsonic flow through an axial turbine configuration for which considerable experimental data exists. Grid refinement studies were also conducted as part of the code validation process. The current status of the research, along with planned future directions, are also discussed
ScaleResolving Simulations of a Fundamental TrailingEdge Cooling Slot Using a DiscontinuousGalerkin SpectralElement Method
The accurate prediction of turbulent mixing in high-pressure turbines that incorporate various airfoil surface-cooling strategies is becoming increasing critical to the design of modern gas turbine engines where the quest for improved efficiency is driving compressor overall pressure ratios and turbine inlet temperatures to much higher levels than ever before. In the present paper, a recently developed computational capability for accurate and efficient scaleresolving simulations of turbomachinery is extended to study the turbulent mixing mechanism of a simplified abstraction of an airfoil trailing-edge cooling slot - a plane wall jet with finite lip thickness discharging into an ambient flow. The computational capability is based on an entropy stable, discontinuousGalerkin approach that extends to arbitrarily high orders of spatial and temporal accuracy. The numerical results show that the present simulations capture the trends observed in the experiments. Discrepancies between the simulations and experiments are believed to be due to differences in the inflow profiles and tunnel sidewall effects. The thick lip configuration leads to a thicker wake and higher unsteadiness in the wall jet compared to the thin lip. A detailed comparison of the turbulent flowfields is presented to highlight differences arising due to lip thickness variations
Method for Constructing Composite Response Surfaces by Combining Neural Networks with Polynominal Interpolation or Estimation Techniques
A method and system for data modeling that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The invention partitions the parameters into a first set of s simple parameters, where observable data are expressible as low order polynomials, and c complex parameters that reflect more complicated variation of the observed data. Variation of the data with the simple parameters is modeled using polynomials; and variation of the data with the complex parameters at each vertex is analyzed using a neural network. Variations with the simple parameters and with the complex parameters are expressed using a first sequence of shape functions and a second sequence of neural network functions. The first and second sequences are multiplicatively combined to form a composite response surface, dependent upon the parameter values, that can be used to identify an accurate mod
Scale-Resolving Simulations of Low-Pressure Turbine Cascades with Wall Roughness Using A Spectral-Element Method
The accurate prediction of wall-roughness effects in turbomachinery is becoming critical as turbine designers address airfoil surface quality and degradation concerns arising from the shift to advanced ceramic matrix composite (CMC) or additively-manufactured airfoils operating in higher temperature environments. In this paper, a recently developed computational capability for accurate and efficient scale-resolving simulations of turbomachinery is extended to analyze the boundary- layer separation and transition characteristics in a rough-wall low-pressure turbine (LPT) cascade. The computational capability is based on an entropy-stable discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy, and is implemented in an efficient manner for a modern high performance computer architecture. Results from the scale-resolving simulations of both smooth and rough airfoil cascades are presented and compared to previous experiments and numerical simulations. The results show that the suction surface boundary layer undergoes laminar separation, transition, and turbulent reattachment for the smooth airfoil cascade, while in the presence of roughness the separation and transition behavior of the suction surface boundary layer is substantially modified. The differences between the smooth and rough airfoil cascades are then highlighted by a detailed analysis of their respective turbulent flow fields
DNS of Low-Pressure Turbine Cascade Flows with Elevated Inflow Turbulence Using a Discontinuous-Galerkin Spectral-Element Method
Recent progress towards developing a new computational capability for accurate and efficient high-fidelity direct numerical simulation (DNS) and large-eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy- stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy, and is implemented in a computationally efficient manner on a modern high performance computer architecture. An inflow turbulence generation procedure based on a linear forcing approach has been incorporated in this framework and DNS conducted to study the effect of inflow turbulence on the suction- side separation bubble in low-pressure turbine (LPT) cascades. The T106 series of airfoil cascades in both lightly (T106A) and highly loaded (T106C) configurations at exit isentropic Reynolds numbers of 60,000 and 80,000, respectively, are considered. The numerical simulations are performed using 8th-order accurate spatial and 4th-order accurate temporal discretization. The changes in separation bubble topology due to elevated inflow turbulence is captured by the present method and the physical mechanisms leading to the changes are explained. The present results are in good agreement with prior numerical simulations but some expected discrepancies with the experimental data for the T106C case are noted and discussed
Development of a Perfectly Matched Layer Technique for a Discontinuous-Galerkin Spectral-Element Method
The perfectly matched layer (PML) technique is developed in the context of a high- order spectral-element Discontinuous-Galerkin (DG) method. The technique is applied to a range of test cases and is shown to be superior compared to other approaches, such as those based on using characteristic boundary conditions and sponge layers, for treating the inflow and outflow boundaries of computational domains. In general, the PML technique improves the quality of the numerical results for simulations of practical flow configurations, but it also exhibits some instabilities for large perturbations. A preliminary analysis that attempts to understand the source of these instabilities is discussed