32 research outputs found

    Oxidative stress, NADPH oxidases, and arteries

    Get PDF
    Atherosclerosis and its major complications –myocardial infarction and stroke– remain major causes of death and disability in the United States and world-wide. Indeed, with dramatic increases in obesity and diabetes mellitus, the prevalence and public health impact of cardiovascular diseases (CVD) will likely remain high. Major advances have been made in development of new therapies to reduce the incidence of atherosclerosis and CVD, in particular for treatment of hypercholesterolemia and hypertension. Oxidative stress is the common mechanistic link for many CVD risk factors. However, only recently have the tools existed to study the interface between oxidative stress and CVD in animal models. The most important source of reactive oxygen species (and hence oxidative stress) in vascular cells are the multiple forms of enzymes nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Recently published and emerging studies now clearly establish that: 1) NADPH oxidases are of critical importance in atherosclerosis and hypertension in animal models; 2) given the tissue-specific expression of key components of NADPH oxidase, it may be possible to target vascular oxidative stress for prevention of CVD

    Redox signaling in cardiovascular health and disease

    Get PDF
    Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyper-activation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia–reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD

    Thrombin Regulates Vascular Smooth Muscle Cell Growth and Heat Shock Proteins via the JAK-STAT Pathway

    Get PDF
    The growth-stimulating effects of thrombin are mediated primarily via activation of a G protein-coupled receptor, PAR-1. Because PAR-1 has no intrinsic tyrosine kinase activity, yet requires tyrosine phosphorylation events to induce mitogenesis, we investigated the role of the Janus tyrosine kinases (JAKs) in thrombin-mediated signaling. JAK2 was activated rapidly in rat vascular smooth muscle cells (VSMC) treated with thrombin, and signal transducers and activators of transcription (STAT1 and STAT3) were phosphorylated and translocated to the nucleus in a JAK2-dependent manner. AG-490, a JAK2-specific inhibitor, and a dominant negative JAK2 mutant inhibited thrombin-induced ERK2 activity and VSMC proliferation suggesting that JAK2 is upstream of the Ras/Raf/MEK/ERK pathway. To elucidate the functional significance of JAK-STAT activation, we studied the effect of thrombin on heat shock protein (Hsp) expression, based upon the following: 1) reports that thrombin stimulates reactive oxygen species production in VSMC; 2) the putative role of Hsps in modulating cellular responses to reactive oxygen species; and 3) the presence of functional STAT1/3-binding sites in Hsp70 and Hsp90beta promoters. Indeed, thrombin up-regulated Hsp70 and Hsp90 protein expression via enhanced binding of STATs to cognate binding sites in the Hsp70 and Hsp90 promoters. Together, these results suggest that JAK-STAT pathway activation is necessary for thrombin-induced VSMC growth and Hsp gene expression

    Attenuated Superoxide Dismutase 2 Activity Induces Atherosclerotic Plaque Instability During Aging in Hyperlipidemic Mice

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142527/1/jah32679-sup-0001-SupInfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142527/2/jah32679_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142527/3/jah32679.pd

    Leukocyte Antigen-related Deficiency Enhances Insulin-like Growth Factor-1 Signaling in Vascular Smooth Muscle Cells and Promotes Neointima Formation in Response to Vascular Injury

    Get PDF
    Increase in the expression of leukocyte antigen-related (LAR) protein causes insulin resistance, an important contributor to atherosclerosis. However, the function of LAR in atherosclerosis is not known. To address whether LAR is important in the response of vascular cells to atherogenic stimuli, we investigated cell proliferation, migration, and insulin-like growth factor-1 receptor (IGF-1R) signaling in wild-type and LAR(-/-) mouse vascular smooth muscle cells (VSMC) treated with IGF-1. Absence of LAR significantly enhanced proliferation and migration of VSMC compared with wild-type cells after IGF-1 treatment. U0126 and LY249002, specific inhibitors of MAPK/ERK kinase (MEK) and phosphoinositide 3-kinase, respectively, inhibited IGF-1-induced DNA synthesis and migration in both wild-type and LAR(-/-) VSMC. IGF-1 markedly enhanced IGF-1R phosphorylation in both wild-type and LAR(-/-) VSMC, but the phosphorylation was 90% higher in knock-out cells compared with wild-type cells. Absence of LAR enhanced phosphorylation of insulin receptor substrate-1 and insulin receptor substrate-1-associated phosphoinositide 3-kinase activity in VSMC treated with IGF-1. IGF-1-induced phosphorylation of ERK1/2 also increased significantly in LAR(-/-) VSMC compared with wild-type cells. Furthermore, LAR directly binds to IGF-1R in glutathione S-transferase-LAR pull-down and IGF-1R immunoprecipitation experiments and recombinant LAR dephosphorylates IGF-1R in vitro. Neointima formation in response to arterial injury and IGF-1R phosphorylation in neointima increased significantly in LAR(-/-) mice compared with wild-type mice. A significant decrease in body weight, fasting insulin, and IGF-1 levels were observed in LAR(-/-) mice compared with wild-type mice. Together, these data indicate that LAR regulates IGF-1R signaling in VSMC and dysregulation of this phosphatase may lead to VSMC hyperplasia

    NOX4 NADPH Oxidase-Dependent Mitochondrial Oxidative Stress in Aging-Associated Cardiovascular Disease

    Get PDF
    Aims: Increased oxidative stress and vascular inflammation are implicated in increased cardiovascular disease (CVD) incidence with age. We and others demonstrated that NOX1/2 NADPH oxidase inhibition, by genetic deletion of p47phox, in Apoe−/− mice decreases vascular reactive oxygen species (ROS) generation and atherosclerosis in young age. The present study examined whether NOX1/2 NADPH oxidases are also pivotal to aging-associated CVD. Results: Both aged (16 months) Apoe−/− and Apoe−/−/p47phox−/− mice had increased atherosclerotic lesion area, aortic stiffness, and systolic dysfunction compared with young (4 months) cohorts. Cellular and mitochondrial ROS (mtROS) levels were significantly higher in aortic wall and vascular smooth muscle cells (VSMCs) from aged wild-type and p47phox−/− mice. VSMCs from aged mice had increased mitochondrial protein oxidation and dysfunction and increased vascular cell adhesion molecule 1 expression, which was abrogated with (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (MitoTEMPO) treatment. NOX4 expression was increased in the vasculature and mitochondria of aged mice and its suppression with shRNA in VSMCs from aged mice decreased mtROS levels and improved function. Increased mtROS levels were associated with enhanced mitochondrial NOX4 expression in aortic VSMCs from aged subjects, and NOX4 expression levels in arterial wall correlated with age and atherosclerotic severity. Aged Apoe−/− mice treated with MitoTEMPO and 2-(2-chlorophenyl)-4-methyl-5-(pyridin-2-ylmethyl)-1H-pyrazolo[4,3-c]pyridine-3,6(2H,5H)-dione had decreased vascular ROS levels and atherosclerosis and preserved vascular and cardiac function. Innovation and Conclusion: These data suggest that NOX4, but not NOX1/2, and mitochondrial oxidative stress are mediators of CVD in aging under hyperlipidemic conditions. Regulating NOX4 activity/expression and using mitochondrial antioxidants are potential approaches to reducing aging-associated CVD. Antioxid. Redox Signal. 23, 1389–1409

    Mitochondrial dysfunction and metabolic reprogramming induce macrophage pro-inflammatory phenotype switch and atherosclerosis progression in aging

    Get PDF
    IntroductionAging increases the risk of atherosclerotic vascular disease and its complications. Macrophages are pivotal in the pathogenesis of vascular aging, driving inflammation and atherosclerosis progression. NOX4 (NADPH oxidase 4) expression increases with age, correlating with mitochondrial dysfunction, inflammation, and atherosclerosis. We hypothesized that the NOX4-dependent mitochondrial oxidative stress promotes aging-associated atherosclerosis progression by causing metabolic dysfunction and inflammatory phenotype switch in macrophages.MethodsWe studied atherosclerotic lesion morphology and macrophage phenotype in young (5-month-old) and aged (16-month-old) Nox4-/-/Apoe-/- and Apoe-/- mice fed Western diet.ResultsYoung Nox4-/-/Apoe-/- and Apoe-/- mice had comparable aortic and brachiocephalic artery atherosclerotic lesion cross-sectional areas. Aged mice showed significantly increased lesion area compared with young mice. Aged Nox4-/-/Apoe-/- had significantly lower lesion areas than Apoe-/- mice. Compared with Apoe-/- mice, atherosclerotic lesions in aged Nox4-/-/Apoe-/- showed reduced cellular and mitochondrial ROS and oxidative DNA damage, lower necrotic core area, higher collagen content, and decreased inflammatory cytokine expression. Immunofluorescence and flow cytometry analysis revealed that aged Apoe-/- mice had a higher percentage of classically activated pro-inflammatory macrophages (CD38+CD80+) in the lesions. Aged Nox4-/-/Apoe-/- mice had a significantly higher proportion of alternatively activated pro-resolving macrophages (EGR2+/CD163+CD206+) in the lesions, with an increased CD38+/EGR2+ cell ratio compared with Apoe-/- mice. Mitochondrial respiration assessment revealed impaired oxidative phosphorylation and increased glycolytic ATP production in macrophages from aged Apoe-/- mice. In contrast, macrophages from Nox4-/-/Apoe-/- mice were less glycolytic and more aerobic, with preserved basal and maximal respiration and mitochondrial ATP production. Macrophages from Nox4-/-/Apoe-/- mice also had lower mitochondrial ROS levels and reduced IL1β secretion; flow cytometry analysis showed fewer CD38+ cells after IFNγ+LPS treatment and more EGR2+ cells after IL4 treatment than in Apoe-/- macrophages. In aged Apoe-/- mice, inhibition of NOX4 activity using GKT137831 significantly reduced macrophage mitochondrial ROS and improved mitochondrial function, resulting in decreased CD68+CD80+ and increased CD163+CD206+ lesion macrophage proportion and attenuated atherosclerosis.DiscussionOur findings suggest that increased NOX4 in aging drives macrophage mitochondrial dysfunction, glycolytic metabolic switch, and pro-inflammatory phenotype, advancing atherosclerosis. Inhibiting NOX4 or mitochondrial dysfunction could alleviate vascular inflammation and atherosclerosis, preserving plaque integrity

    The Role of Particulate Matter-Associated Zinc in Cardiac Injury in Rats

    Get PDF
    Background: Exposure to particulate matter (PM) has been associated with increased cardiovascular morbidity; however, causative components are unknown. Zinc is a major element detected at high levels in urban air.Objective We investigated the role of PM-associated zinc in cardiac injury. Methods: We repeatedly exposed 12- to 14-week-old male Wistar Kyoto rats intratracheally (1×/week for 8 or16 weeks) to a) saline (control); b) PM having no soluble zinc (Mount St. Helens ash, MSH); or c) whole-combustion PM suspension containing 14.5 μg/mg of water-soluble zinc at high dose (PM-HD) and d ) low dose (PM-LD), e) the aqueous fraction of this suspension (14.5 μg/mg of soluble zinc) (PM-L), or f ) zinc sulfate (rats exposed for 8 weeks received double the concentration of all PM components of rats exposed for 16 weeks). Results: Pulmonary inflammation was apparent in all exposure groups when compared with saline (8 weeks greater than 16 weeks). PM with or without zinc, or with zinc alone caused small increases in focal subepicardial inflammation, degeneration, and fibrosis. Lesions were not detected in controls at 8 weeks but were noted at 16 weeks. We analyzed mitochondrial DNA damage using quantitative polymerase chain reaction and found that all groups except MSH caused varying degrees of damage relative to control. Total cardiac aconitase activity was inhibited in rats receiving soluble zinc. Expression array analysis of heart tissue revealed modest changes in mRNA for genes involved in signaling, ion channels function, oxidative stress, mitochondrial fatty acid metabolism, and cell cycle regulation in zinc but not in MSH-exposed rats. Conclusion: These results suggest that water-soluble PM-associated zinc may be one of the causal components involved in PM cardiac effects

    Metabolic Bases for Differences in Sensitivity of Two Pea Cultivars to Sulfur Dioxide

    Full text link
    corecore