5 research outputs found

    Graphene Oxide–Protein-Based Scaffolds for Tissue Engineering: Recent Advances and Applications

    No full text
    The field of tissue engineering is constantly evolving as it aims to develop bioengineered and functional tissues and organs for repair or replacement. Due to their large surface area and ability to interact with proteins and peptides, graphene oxides offer valuable physiochemical and biological features for biomedical applications and have been successfully employed for optimizing scaffold architectures for a wide range of organs, from the skin to cardiac tissue. This review critically focuses on opportunities to employ protein–graphene oxide structures either as nanocomposites or as biocomplexes and highlights the effects of carbonaceous nanostructures on protein conformation and structural stability for applications in tissue engineering and regenerative medicine. Herein, recent applications and the biological activity of nanocomposite bioconjugates are analyzed with respect to cell viability and proliferation, along with the ability of these constructs to sustain the formation of new and functional tissue. Novel strategies and approaches based on stem cell therapy, as well as the involvement of the extracellular matrix in the design of smart nanoplatforms, are discussed

    Composite Materials from Renewable Resources as Sustainable Corrosion Protection Coatings

    No full text
    Epoxidized linseed oil (ELO) and kraft lignin (LnK) were used to obtain new sustainable composites as corrosion protection layers through a double-curing procedure involving UV radiation and thermal curing to ensure homogeneous distribution of the filler. The crosslinked structures were confirmed by Fourier-transform infrared spectrometry (FTIR), by comparative monitorization of the absorption band at 825 cm−1, attributed to the stretching vibration of epoxy rings. Thermal degradation behavior under N2 gas indicates that the higher LnK content, the better thermal stability of the composites (over 30 °C of Td10% for ELO + 15% LnK), while for the experiment under air-oxidant atmosphere, the lower LnK content (5%) conducted to the more thermo-stable material. Dynamic-mechanic behavior and water affinity of the new materials were also investigated. The increase of the Tg values with the increase of the LnK content (20 °C for the composite with 15% LnK) denote the reinforcement effect of the LnK, while the surface and bulk water affinity were not dramatically affected. All the obtained composites were tested as carbon steel corrosion protection coatings, resulting in significant increase of corrosion inhibition efficiency (IE) of 140–380%, highlighting the great potential of the bio-based ELO-LnK composites as a future perspective for industrial application

    A Comparative Study of the Impact of the Bleaching Method on the Production and Characterization of Cotton-Origin Nanocrystalline Cellulose by Acid and Enzymatic Hydrolysis

    No full text
    Due to environmental concerns, as well as its exceptional physical and mechanical capabilities, biodegradability, and optical and barrier qualities, nanocellulose has drawn a lot of interest as a source of reinforcing materials that are nanometer sized. This article focuses on how to manufacture cellulose nanomaterials from cotton by using different types of acids such as H2SO4 and HCI in different concentrations and in the presence of enzymes such as cellulase and xylanase. Two different types of bleaching methods were used before acid and enzyme hydrolysis. In the first method, cellulose was extracted by bleaching the cotton with H2O2. In the second method, NaOCl was utilized. For both methods, different concentrations of acids and enzymes were used to isolate nanocellulose materials, cellulose nanocrystals (CNC), and cellulose nanofibrils (CNF) at different temperatures. All obtained nanocellulose materials were analyzed through different techniques such as FT-IR, Zeta potentials, DLS, Raman spectroscopy, TGA, DSC, XRD, and SEM. The characteristic signals related to cellulose nanocrystals (CNC) were confirmed with the aid of Raman and FT-IR spectroscopy. According to the XRD results, the samples’ crystallinity percentages range from 54.1% to 63.2%. The SEM image showed that long fibers break down into small fibers and needle-like features are seen on the surface of the fibers. Using different types of bleaching has no significant effect on the thermal stability of samples. The results demonstrate a successful method for synthesizing cellulose nanofibrils (CNF) from cotton through enzymatic hydrolysis, but the results also demonstrated that the choice of bleaching method has a significant impact on the hydrodynamic properties and crystallinity of both CNC and CNF samples

    Comparative Thermo-Mechanical Properties of Sustainable Epoxy Polymer Networks Derived from Linseed Oil

    No full text
    Considering its great industrial potential, epoxidized linseed oil (ELO) was crosslinked with different agents, both natural and synthetic: citric acid (CA, in the presence of water—W, or tetrahydrofuran—THF, as activator molecules) and Jeffamine D230, respectively, resulting bio-based polymeric matrices, studied further, comparatively, in terms of their properties, through different methods. Thermal curing parameters were established by means of Differential Scanning Calorimetry (DSC). Fourier transform Infrared Spectroscopy (FTIR) and DSC were used to identify the reactivity of each ELO-based formulation, discussing the influence of the employed curing systems under the conversion of the epoxy rings. Then, the obtained bio-based materials were characterized by different methods, establishing the structure–properties relation. Thermogravimetric analysis revealed higher thermal stability for the ELO_CA material when THF was used as an activator. Moreover, a higher glass transition temperature (Tg) with ~12 °C was registered for this material when compared with the one that resulted through the crosslinking of ELO with D230 conventional amine. Other important features, such as crosslink density, storage modulus, mechanical features, and water affinity, were discussed. Under the loop of a comprehensive approach, a set of remarkable properties were obtained for ELO_CA_THF material when compared with the one resulting from the crosslinking of ELO with the synthetic Jeffamine

    Investigating the Synthesis and Characteristics of UV-Cured Bio-Based Epoxy Vegetable Oil-Lignin Composites Mediated by Structure-Directing Agents

    No full text
    Bio-based composites were developed from the epoxy derivatives of Lallemantia iberica oil and kraft lignin (ELALO and EpLnK), using UV radiation as a low energy consumption tool for the oxiranes reaction. To avoid the filler sedimentation or its inhomogeneous distribution in the oil matrix, different structure-directing agents (SDA) were employed: 1,3:2,4-dibenzylidene-D-sorbitol (DBS), 12-hydroxystearic acid (HSA) and sorbitan monostearate (Span 60). The SDA and EpLnK effect upon the ELALO-based formulations, their curing reaction and the performance of the resulting materials were investigated. Fourier-transform Infrared Spectrometry (FTIR) indicates different modes of molecular arrangement through H bonds for the initial ELALO-SDA or ELALO-SDA-EpLnK systems, also confirming the epoxy group’s reaction through the cationic mechanism for the final composites. Gel fraction measurements validate the significant conversion of the epoxides for those materials containing SDAs or 1% EpLnK; an increased EpLnK amount (5%), with or without SDA addition, conduced to an inefficient polymerization process, with the UV radiation being partially absorbed by the filler. Thermo-gravimetric and dynamic-mechanical analyses (TGA and DMA) revealed good properties for the ELALO-based materials. By loading 1% EpLnK, the thermal stability was improved to with 10 °C (for Td3%) and the addition of each SDA differently influenced the Tg values but also gave differences in the glassy and rubbery states when the storage moduli were interrogated, depending on their chemical structures. Water affinity and morphological studies were also carried out
    corecore