2,864 research outputs found

    Spatiotemporal release of VEGF from biodegradable polylactic-co-glycolic acid microspheres induces angiogenesis in chick chorionic allantoic membrane assay

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.While vascular endothelial growth factor (VEGF) is an acknowledged potent pro-angiogenic agent there is a need to deliver it at an appropriate concentration for several days to achieve angiogenesis. The aim of this study was to produce microspheres of biodegradable polylactic-co-glycolic acid (PLGA) tailored to achieve sustained release of VEGF at an appropriate concentration over seven days, avoiding excessive unregulated release of VEGF that has been associated with the formation of leaky blood vessels. Several formulations were examined to produce microspheres loaded with both human serum albumin (HSA) and VEGF to achieve release of VEGF between 3 and 10 ng per ml for seven days to match the therapeutic window desired for angiogenesis. In vitro experiments showed an increase in endothelial cell proliferation in response to microspheres bearing VEGF. Similarly, when microspheres containing VEGF were added to the chorionic membrane of fertilised chicken eggs, there was an increase in the development of blood vessels over seven days in response, which was significant for microspheres bearing VEGF and HSA, but not VEGF alone. There was an increase in both blood vessel density and branching – both signs of proangiogenic activity. Further, there was clearly migration of cells to the VEGF loaded microspheres. In summary, we describe the development of an injectable delivery vehicle to achieve spatiotemporal release of physiologically relevant levels of VEGF for several days and demonstrate the angiogenic response to this. We propose that such a treatment vehicle would be suitable for the treatment of ischemic tissue or wounds

    The evolution of inverted magnetic fields through the inner heliosphere

    Get PDF
    Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood.Parker Solar Probe has recently observed rapid, AlfvĂ©nic, HMF inversions in the inner heliosphere, known as ‘switchbacks’, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. These cases suggest that the source of inverted HMF is near the Sun, and it follows that these inversions would gradually decay and straighten as they propagate out through the heliosphere. Alternatively, HMF inversions could form during solar wind transit, through phenomena such velocity shears, draping over ejecta, or waves and turbulence. Such processes are expected to lead to a qualitatively radial evolution of inverted HMF structures. Using Helios measurements spanning 0.3–1 AU, we examine the occurrence rate of inverted HMF, as well as other magnetic field morphologies, as a function of radial distance r, and find that it continually increases. This trend may be explained by inverted HMF observed between 0.3–1 AU being primarily driven by one or more of the above in-transit processes, rather than created at the Sun. We make suggestions as to the relative importance of these different processes based on the evolution of the magnetic field properties associated with inverted HMF. We also explore alternative explanations outside of our suggested driving processes which may lead to the observed trend

    Gastrointestinal embryology related clinical conditions

    Get PDF
    High-yield gastrointestinal embryology related clinical conditions is emphasized in this infographic. Other infographics in this series include cardiac and pulmonary embryology related clinical conditions

    Food, pathogen, signal: The multifaceted nature of a bacterial diet

    Get PDF
    C. elegans, both in the wild and in the lab, live on a diet of live bacteria. The bacterial diet provides nutrients for C. elegans, but can also play a number of other roles in C. elegans physiology. Recently, we compared the effects of different bacterial diets on life history traits and gene expression. Here, we discuss our recent findings in the context of other dietary studies and highlight challenges in understanding dietary effects. For instance, since bacteria can be pathogenic it can be difficult to disentangle pathogenic from dietary effects. Here we summarize different bacterial diets used for C. elegans and how they affect the animal

    How Does a Responsible Leader Win in a Competitive World?

    Get PDF
    Competitiveness demonstrates a firm’s effectiveness in achieving an advantage over others. A leader’s competitiveness can facilitate higher profits and growth. It can also lead to unethical and irresponsible corporate dealings. This paper suggests competitiveness can be responsible. Responsible Leadership defines two main responsible leaders (RL), integrative and instrumental. Integrators are linked to social responsibility and multiple stakeholders, while Instrumentalists are associated with competitive advantage and shareholders. Missing from extant research frameworks is how the two RLs experience competitiveness. We examined the lived experience of a group of Top 100 Leaders in Canada, finding that both RLs practiced responsible competitiveness. A more nuanced group, they shared characteristics and personal values that seemed to curb the overreach or hyper-competitiveness associated with irresponsibility

    Cardiac embryology related clinical conditions

    Get PDF
    This infographic focuses on high yield cardiac embryology related clinical conditions and provides a general overview for pathology and treatment

    Parker Solar Probe observations of suprathermal electron flux enhancements originating from coronal hole boundaries

    Get PDF
    Reconnection between pairs of solar magnetic flux elements, one open and the other a closed loop, is theorised to be a crucial process for both maintaining the structure of the corona and producing the solar wind. This 'interchange reconnection' is expected to be particularly active at the open-closed boundaries of coronal holes (CHs). Previous analysis of solar wind data at 1AU indicated that peaks in the flux of suprathermal electrons at slow-fast stream interfaces may arise from magnetic connection to the CH boundary, rather than dynamic effects such as compression. Further, offsets between the peak and stream interface locations are suggested to be the result of interchange reconnection at the source. As a preliminary test of these suggestions, we analyse two solar wind streams observed during the first Parker Solar Probe (PSP) perihelion encounter, each associated with equatorial CH boundaries (one leading and one trailing with respect to rotation). Each stream features a peak in suprathermal electron flux, the locations and associated plasma properties of which are indicative of a solar origin, in agreement with previous suggestions from 1AU observations. Discrepancies between locations of the flux peaks and other features suggest these peaks may too be shifted by source region interchange reconnection. Our interpretation of each event is compatible with a global pattern of open flux transport, although random footpoint motions or other explanations remain feasible. These exploratory results highlight future opportunities for statistical studies regarding interchange reconnection and flux transport at CH boundaries with modern near-Sun missions
    • 

    corecore