2 research outputs found
Risks of mining to salmonid-bearing watersheds
Mining provides resources for people but can pose risks to ecosystems that support cultural keystone species. Our
synthesis reviews relevant aspects of mining operations, describes the ecology of salmonid-bearing watersheds
in northwestern North America, and compiles the impacts of metal and coal extraction on salmonids and their
habitat. We conservatively estimate that this region encompasses nearly 4000 past producing mines, with
present-day operations ranging from small placer sites to massive open-pit projects that annually mine more
than 118 million metric tons of earth. Despite impact assessments that are intended to evaluate risk and inform
mitigation, mines continue to harm salmonid-bearing watersheds via pathways such as toxic contaminants, stream
channel burial, and flow regime alteration. To better maintain watershed processes that benefit salmonids, we
highlight key windows during the mining governance life cycle for science to guide policy by more accurately
accounting for stressor complexity, cumulative effects, and future environmental change.This review is based on an October 2019 workshop held at the University
of Montana Flathead Lake Biological Station (more information at https://flbs.umt.edu/
newflbs/research/working-groups/mining-and-watersheds/). We thank E. O’Neill and other
participants for valuable contributions. A. Beaudreau, M. LaCroix, P. McGrath, K. Schofield, and
L. Brown provided helpful reviews of earlier drafts. Three anonymous reviewers provided
thoughtful critiques that greatly improved the manuscript. The views expressed in this article
are those of the authors and do not necessarily represent the views or policies of the
U.S. Environmental Protection Agency. Our analysis comes from a western science perspective
and hence does not incorporate Indigenous knowledge systems. We acknowledge this gap
and highlight that the lands and waters we explore in this review have been stewarded by
Indigenous Peoples for millennia and continue to be so. Funding: The workshop was
cooperatively funded by the Wilburforce Foundation and The Salmon Science Network
funded by the Gordon and Betty Moore Foundation. Author contributions: C.J.S. led the
review process, writing, and editing. C.J.S. and E.K.S. co-organized the workshop. E.K.S. and
J.W.M. extensively contributed to all aspects of the review conceptualization, writing, and
editing. A.R.W., S.A.N., J.L.E., D.M.C., S.L.O., R.L.M., F.R.H., D.C.W., and J.W. significantly
contributed to portions of the review conceptualization, writing, and editing. J.C., M.Ca., M.Co.,
C.A.F., G.K., E.D.L., R.M., V.M., J.K.M., M.V.M., and N.S. provided writing and editing and are listed
alphabetically. Competing interests: The authors declare that they have no competing
interests. Data and materials availability: All data needed to evaluate the conclusions in the
paper are present in the paper and/or the Supplementary Materials.Ye
MHC heterozygote advantage in simian immunodeficiency virus-infected Mauritian cynomolgus macaques
The importance of a broad CD8-T lymphocyte (CD8-TL) immune response to HIV is unknown. Ex vivo measurements of immunological activity directed at a limited number of defined epitopes provide an incomplete portrait of the actual immune response. Here we examined viral loads in SIV-infected MHC homozygous and heterozygous Mauritian cynomolgus macaques (MCM). Chronic viremia in MHC homozygous macaques was 80-fold greater than in MHC heterozygous macaques. Virus from MHC homozygous macaques accumulated 11 to 14 variants consistent with escape from CD8-TL responses after one year of SIV infection. The pattern of mutations detected in MHC heterozygous macaques suggests that their epitope-specific CD8-TL responses are a composite of those present in their MHC homozygous counterparts. These results provide the clearest example of MHC heterozygote advantage among individuals infected with the same immunodeficiency virus strain, suggesting that broad recognition of multiple CD8-TL epitopes should be a key feature of HIV vaccines