28 research outputs found

    Shared component modelling as an alternative to assess geographical variations in medical practice: gender inequalities in hospital admissions for chronic diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small area analysis is the most prevalent methodological approach in the study of unwarranted and systematic variation in medical practice at geographical level. Several of its limitations drive researchers to use disease mapping methods -deemed as a valuable alternative. This work aims at exploring these techniques using - as a case of study- the gender differences in rates of hospitalization in elderly patients with chronic diseases.</p> <p>Methods</p> <p>Design and study setting: An empirical study of 538,358 hospitalizations affecting individuals aged over 75, who were admitted due to a chronic condition in 2006, were used to compare Small Area Analysis (SAVA), the Besag-York-Mollie (BYM) modelling and the Shared Component Modelling (SCM). Main endpoint: Gender spatial variation was measured, as follows: SAVA estimated gender-specific utilization ratio; BYM estimated the fraction of variance attributable to spatial correlation in each gender; and, SCM estimated the fraction of variance shared by the two genders, and those specific for each one.</p> <p>Results</p> <p>Hospitalization rates due to chronic diseases in the elderly were higher in men (median per area 21.4 per 100 inhabitants, interquartile range: 17.6 to 25.0) than in women (median per area 13.7 per 100, interquartile range: 10.8 to 16.6). Whereas Utilization Ratios showed a similar geographical pattern of variation in both genders, BYM found a high fraction of variation attributable to spatial correlation in both men (71%, CI95%: 50 to 94) and women (62%, CI95%: 45 to 77). In turn, SCM showed that the geographical admission pattern was mainly shared, with just 6% (CI95%: 4 to 8) of variation specific to the women component.</p> <p>Conclusions</p> <p>Whereas SAVA and BYM focused on the magnitude of variation and on allocating where variability cannot be due to chance, SCM signalled discrepant areas where latent factors would differently affect men and women.</p

    Phosphorylation of GFAP is associated with injury in the neonatal pig hypoxic-ischemic brain

    Get PDF
    Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed in the astrocyte cytoskeleton that plays an important role in the structure and function of the cell. GFAP can be phosphorylated at six serine (Ser) or threonine (Thr) residues but little is known about the role of GFAP phosphorylation in physiological and pathophysiological states. We have generated antibodies against two phosphorylated GFAP (pGFAP) proteins: p8GFAP, where GFAP is phosphorylated at Ser-8 and p13GFAP, where GFAP is phosphorylated at Ser-13. We examined p8GFAP and p13GFAP expression in the control neonatal pig brain and at 24 and 72 h after an hypoxic-ischemic (HI) insult. Immunohistochemistry demonstrated pGFAP expression in astrocytes with an atypical cytoskeletal morphology, even in control brains. Semi-quantitative western blotting revealed that p8GFAP expression was significantly increased at 24 h post-insult in HI animals with seizures in frontal, parietal, temporal and occipital cortices. At 72 h post-insult, p8GFAP and p13GFAP expression were significantly increased in HI animals with seizures in brain regions that are vulnerable to cellular damage (cortex and basal ganglia), but no changes were observed in brain regions that are relatively spared following an HI insult (brain stem and cerebellum). Increased pGFAP expression was associated with poor neurological outcomes such as abnormal encephalography and neurobehaviour, and increased histological brain damage. Phosphorylation of GFAP may play an important role in astrocyte remodelling during development and disease and could potentially contribute to the plasticity of the central nervous system

    Expression of multiple glutamate transporter splice variants in the rodent testis

    No full text
    Glutamate is a regulated molecule in the mammalian testis. Extracellular regulation of glutamate in the body is determined largely by the expression of plasmalemmal glutamate transporters. We have examined by PCR, western blotting and immunocytochemistry the expression of a panel of sodium-dependent plasmalemmal glutamate transporters in the rat testis. Proteins examined included: glutamate aspartate transporter (GLAST), glutamate transporter 1 (GLT1), excitatory amino acid carrier 1 (EAAC1), excitatory amino acid transporter 4 (EAAT4) and EAAT5. We demonstrate that many of the glutamate transporters in the testis are alternately spliced. GLAST is present as exon-3- and exon-9-skipping forms. GLT1 was similarly present as the alternately spliced forms GLT1b and GLT1c, whereas the abundant brain form (GLT1a) was detectable only at the mRNA level. EAAT5 was also strongly expressed, whereas EAAC1 and EAAT4 were absent. These patterns of expression were compared with the patterns of endogenous glutamate localization and with patterns of d-aspartate accumulation, as assessed by immunocytochemistry. The presence of multiple glutamate transporters in the testis, including unusually spliced forms, suggests that glutamate homeostasis may be critical in this organ. The apparent presence of many of these transporters in the testis and sperm may indicate a need for glutamate transport by such cells

    Neuronal expression of splice variants of "Glial" glutamate transporters in brains afflicted by alzheimer's disease: unmasking an intrinsic neuronal property

    No full text
    Anomalies in glutamate homeostasis may contribute to the pathological processes involved in Alzheimer's disease (AD). Glutamate released from neurons or glial cells is normally rapidly cleared by glutamate transporters, most of which are expressed at the protein level by glial cells. However, in some patho-physiological situations, expression of glutamate transporters that are normally considered to be glial types, appears to be evoked in populations of distressed neurons. This study analysed the expression of exon-skipping forms of the three predominant excitatory amino acid (glutamate) transporters (EAATs1-3) in brains afflicted with AD. We demonstrate by immunocytochemistry in temporal cortex, the expression of these proteins particularly in limited subsets of neurons, some of which appeared to be dys-morphic. Whilst the neuronal expression of the "glial" glutamate transporters EAAT1 and EAAT2 is frequently considered to represent the abnormal and ectopic expression of such transporters, we suggest this may be a misinterpretation, since neurons such as cortical pyramidal cells normally express abundant mRNA for these EAATs (but little if any EAAT protein expression). We hypothesize instead that distressed neurons in the AD brain can turn on the translation of pre-existent mRNA pools, or suppress the degradation of alternately spliced glutamate transporter protein, leading to the "unmasking" of, rather than evoked expression of "glial" glutamate transporters in stressed neurons
    corecore