91 research outputs found

    Two-photon double ionization of neon using an intense attosecond pulse train

    Full text link
    We present the first demonstration of two-photon double ionization of neon using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a photon energy regime where both direct and sequential mechanisms are allowed. For an APT generated through high-order harmonic generation (HHG) in argon we achieve a total pulse energy close to 1 μ\muJ, a central energy of 35 eV and a total bandwidth of 30\sim30 eV. The APT is focused by broadband optics in a neon gas target to an intensity of 310123\cdot10^{12} W\cdotcm2^{-2}. By tuning the photon energy across the threshold for the sequential process the double ionization signal can be turned on and off, indicating that the two-photon double ionization predominantly occurs through a sequential process. The demonstrated performance opens up possibilities for future XUV-XUV pump-probe experiments with attosecond temporal resolution in a photon energy range where it is possible to unravel the dynamics behind direct vs. sequential double ionization and the associated electron correlation effects

    Effects of the environment on the uracil molecule ionization induced by 12C4+ ion beam

    Get PDF
    In this study the fragmentation of isolated uracil molecules, uracil clusters and hydrated uracil clusters induced by 12 C 4+ ions at 36 keV energy has been investigated. The mass spectra obtained by a TOF mass spectrometer are analyzed and compared to each other in order to see how the environment affects the fragmentation dynamics. The main differences between the mass spectra are highlighted and possible fragmentation pathways are proposed
    corecore