4 research outputs found
CRISPR-Cas influences the acquisition of antibiotic resistance in Klebsiella pneumoniae.
In the US Carbapenem resistance in Klebsiella pneumoniae (Kp) is primarily attributed to the presence of the genes blaKPC-2 and blaKPC-3, which are transmitted via plasmids. Carbapenem-resistant Kp (CR-Kp) infections are associated with hospital outbreaks. They are difficult to treat, and associated with high mortality rates prompting studies of how resistance is obtained. In this study, we determined the presence of CRISPR-Cas in 304 clinical Kp strains. The CRISPR-Cas system has been found to prevent the spread of plasmids and bacteriophages, and therefore limits the horizontal gene transfer mediated by these mobile genetic elements. Here, we hypothesized that only those Kp strains that lack CRISPR-Cas can acquire CR plasmids, while those strains that have CRISPR-Cas are protected from gaining these plasmids and thus maintain sensitivity to antimicrobials. Our results show that CRISPR-Cas is absent in most clinical Kp strains including the clinically important ST258 clone. ST258 strains that continue to be sensitive to carbapenems also lack CRISPR-Cas. Interestingly, CRISPR-Cas positive strains, all non-ST258, exhibit lower resistance rates to antimicrobials than CRISPR-Cas negative strains. Importantly, we demonstrate that the presence of CRISPR-Cas appears to inhibit the acquisition of blaKPC plasmids in 7 Kp strains. Furthermore, we show that strains that are unable to acquire blaKPC plasmids contain CRISPR spacer sequences highly identical to those found in previously published multidrug-resistance-containing plasmids. Lastly, to our knowledge this is the first paper demonstrating that resistance to blaKPC plasmid invasion in a CRISPR-containing Kp strain can be reversed by deleting the CRISPR-cas cassette
Recommended from our members
Increased mortality in hospital- compared to community-onset carbapenem-resistant enterobacterales infections
Abstract Background The CDC reported a 35% increase in hospital-onset (HO) carbapenem-resistant Enterobacterales (CRE) infections during the COVID-19 pandemic. We evaluated patient outcomes following HO and community-onset (CO) CRE bloodstream infections (BSI). Methods Patients prospectively enrolled in CRACKLE-2 from 56 hospitals in 10 countries between 30 April 2016 and 30 November 2019 with a CRE BSI were eligible. Infections were defined as CO or HO by CDC guidelines, and clinical characteristics and outcomes were compared. The primary outcome was desirability of outcome ranking (DOOR) 30 days after index culture. Difference in 30-day mortality was calculated with 95% CI. Results Among 891 patients with CRE BSI, 65% were HO (582/891). Compared to those with CO CRE, patients with HO CRE were younger [median 60 (Q1 42, Q3 70) years versus 65 (52, 74); P < 0.001], had fewer comorbidities [median Charlson comorbidity index 2 (1, 4) versus 3 (1, 5); P = 0.002] and were more acutely ill (Pitt bacteraemia score ≥4: 47% versus 32%; P < 0.001). The probability of a better DOOR outcome in a randomly selected patient with CO BSI compared to a patient with HO BSI was 60.6% (95% CI: 56.8%–64.3%). Mortality at 30-days was 12% higher in HO BSI (192/582; 33%) than CO BSI [66/309 (21%); P < 0.001]. Conclusion We found a disproportionately greater impact on patient outcomes with HO compared to CO CRE BSIs; thus, the recently reported increases in HO CRE infections by CDC requires rigorous surveillance and infection prevention methods to prevent added mortality